
MATH704 DG Sem 2, 2018: Assignment 03

Instructions: - Due 9th November
Your grade will be determined from your 3 best answers. Each question has three parts worth
5 points each giving a maximum of 45 points in total. Feel free to turn in answers for all four
questions, but only the three best will count.

1 Question 01: The Gauss Map of a Closed Surface
A closed surface S ⊆ R3 is a regular surface such that

1. S is a closed subset of R3,

2. S is bounded: there exists an R > 0 such that

S ⊆ BR(0) = {x2 + y2 + z2 ≤ R2}.

A plane P ⊂ R3 divides R3 into two sides: H± = {x ∈ R3 : ±〈n, x− x0〉 > 0} where x0 ∈ P is
any point in P , and n is the normal to P . A set S lies on one side of P if S ⊆ H+ or S ⊆ H−.

Prove that the Gauss map of a closed, oriented surface (compact, no boundary) S is surjective
as follows:

1. Suppose there is a plane P intersecting S at x0 such that in an open neighbourhood V ⊂ S
of x0, S lies on one side of P . Prove that P is the tangent plane to S at x0.
Hint: In a local parametrisation φ : U → V , show the function f(u, v) = 〈φ(u, v)− x0,n〉
has a local minimum at (u0, v0) = φ−1(x0). Hence the first derivative test implies that
∂
∂u
f = ∂

∂v
f = 0. Now what are the coordinate tangent vectors at (u0, v0)?

2. Using the definition of closed surface above, show that for any unit vector n ∈ R3, there
exists a plane P with unit normal vector n such that P ∩ S = ∅.
Now consider the map

Φ(t, Z) = Z + tn, t ∈ R, Z ∈ P.

Then for each t0 ∈ R, P (t) = {Φ(t0, Z) : Z ∈ P} is a plane and P (0) = P .
Show that there exists a t0 ∈ R such that P (t0) ∩ S 6= ∅ and S lies on one side of P (t0).

3. Using the previous parts show that given any unit vector n, there is a point x0 ∈ S such
that the unit normal N(x) = n, and hence the Gauss map is surjective.
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2 Question 02: Surfaces of Revolution
Let f : R → R be a strictly positive function with continuous second derivative and let S be the
surface of revolution parameterized locally by

ϕ(z, θ) = (f(z) cos θ, f(z) sin θ, z).

For all the following calculations, leave your answer in terms of f, f ′, f ′′.
Recall that the matrix representation of g in these coordinates is

g =

(
1 + (f ′)2 0

0 f 2

)
.

1. Show that the matrix representation of the second fundamental form A in these coordinates
is

A = ± 1√
1 + (f ′)2

(
−f ′′ 0
0 f

)
and that the matrix representation of dN is

dN = ± 1√
1 + (f ′)2

(
f ′′

1+(f ′)2
0

0 −1
f

)
.

where ± depends on your chosen orientation.

2. Show that (1, 0) and (0, 1) are eigenvectors of dN and show that the corresponding eigenvalues
are

k1 =
f ′′

(1+(f ′)2)3/2
, k2 =

−1

f
√

1+(f ′)2
.

3. Calculate H,K and show that K ≡ 0 if and only if f(z) = az + b for some a, b ∈ R.

3 Question 03: The Sphere
1. On Sn = {x2

1+ · · ·+x2
n+1 = 1} let N = (0, · · · , 0, 1) and S = (0, · · · , 0,−1) denote the north

and south poles respectively. Let πN and πS denote stereographic projection based at N and
S respectively.
Show that πN : Sn \{N} → Rn and πS : Sn \{S} → Rn are bijections.

2. Show that the transition map τNS = πN ◦ π−1
S maps Rn \{0} diffeomorphicaly with itself.

3. Show that the metric on Rn in coordinates π−1
N : Rn → Sn is

gN(x) = ϕ(x)δ

where δ is the usual Euclidean metric and

ϕ(x) =
4

(1 +
∑n

i=1(xi)2)2
.

Remark: A metric of the form ϕδ is called conformal to δ. In this case, since δ is the
Euclidean metric which is flat, gN is called conformally flat. Since the sphere is covered by
the two open sets Sn \{N} and Sn \{S} on which it is conformally flat, the spherical metric
is locally conformally flat. It is however, not globally conformally flat since a basic result in
topology says that the sphere is not homeomorphic to any Euclidean space.
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4 Question 04: Projective Space
1. Let RPn denote the real projective space of dimension n. Show that for each i = 1, . . . , n+1

the maps
ϕi : [V ] ∈ Ui 7→

1

Vi

V̂i ∈ Rn

are well defined bijections where

Ui = {[(v1, . . . , vn+1)] ∈ RPn : vi 6= 0}

and
V̂i = (v1, . . . , vi−1, vi+1, . . . , vn+1) ∈ Rn

denotes the n-vector obtained from the (n + 1)-vector V by removing the i’th entry. Also
show that the sets Ui, i = 1, . . . , n+ 1 cover RPn.
Remark: The maps ϕi : Ui → Rn are called affine charts.

2. Show the transition map
τ12 = ϕ1 ◦ ϕ−1

2

is a diffeomorphism of the open set {(x1, . . . , xn) ∈ Rn : x1 6= 0} with the open set
{(x1, . . . , xn) ∈ Rn : x2 6= 0}.
Remark: All the transition maps τij with i 6= j are of essentially the same form, just
with i swapped with 1 and j swapped with \2\). Thus all the transition maps τij are
diffeomorphisms.

3. Show that the map
π : V ∈ Sn → [V ] ∈ RPn

is smooth. That is, with respect to the stereographic charts for Sn and affine charts for RPn,
we have

πi ◦ π ◦ π−1
Z : Rn → Rn

is smooth where i = 1, · · · , n + 1 and Z = N,S. For the purposes of this assignment, you
may just show it for i = 1 and Z = N . The other cases are similar.

Show also that for every [V ] ∈ RPn, π−1([V ]) =
{

V
‖V ‖ ,

−V
‖V ‖

}
consists of precisely two points.

Remark: One can also show that dπ is an isomorphism everywhere and so Sn and RPn are
locally diffeomorphic but not globally diffeomorphic giving us a counter example to the global
inverse function theorem. In this case, Sn is the double cover of RPn and Sn is orientable,
while RPn is not.
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