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Regular Parametrised Curves
Definition

A smooth parametrised curve in the plane is a smooth function
7 : (a, b) — R2. In addition, 7 is regular if '(t) # 0 for all t € (a, b).

q
—
e
a b

e Regularity is very important. It allows us to transfer calculus on (a, b)
to calculus on Image v := {(t) : t € (a, b)} C R

@ Space curves are the same but in R3.
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Examples of Curves

Example

7 (t) = (cos(t),sin(t)), -7 < t < m.
Y2(t) = (cos(t?),sin(t?), =/ < t < /7.

Notice that Img(y1) := {71(t) : =7 < t < 7} = Img(72) but y1 # 2. The
first is regular, but 75(0) = 0 so 72 is not regular.

y

Example

~v(t) = (¢, ]t]), t € R.

This time 7 is not differentiable at t = 0 so is not even a smooth
parametrised curve.
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Examples of Curves
Example
y(t) = (£,¢%), teR.

We have Img(v) = {y = x?/3} has a cusp at t = 0. This time, there is no
regular parametrisation of Img(+)! See the implicit function theorem.

Example
v(t) = (t3 — 4t,t> — 4).

Here ~ is regular, but it is not one-to-one. That is, it crosses itself.

Example

v(t) = (cos(t), sin(t)).

Here ~y is one-to-one on (0, 27) but not on any larger interval. However,
7k (0) = 4K (27) so that v smoothly closes up to give a closed curve.

An* smooth ieriodic function satisfies this property.
Paul Bryan 6 /29




Lecture Two: Curves - Change of Parameters

@ Lecture Two: Curves

@ Change of Parameters

Paul Bryan MATH704 Differential Geometry



Change of Parameters

o Let v: (a,b) = R? and o : (c,d) — R? be regular parametrisations
with C :=Img~v =Imgo.

@ Assume for the moment that v and o are one-to-one so that
7~1: C — (a,b) is defined and 0! : C — (c, d) is defined.

o Wecall p =0t o~y:(a,b) = (c,d) the change of parameters.

Lemma
The function o is a diffeomorphism. That is, it is a smooth function with
smooth inverse.
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Differential of Change of Parameters

Proof.

e Let T =+//|¥/| be the unit tangent (regularity!) and N = J(T) be
the unit normal with J rotation by 7/2.

@ Define the function

F(t,u) =~(t) + ulN(t).

@ The differential is the matrix
dlf = (v +uN" N)

Note here we have two columns!

o Now observe that v(t) = I'(t, u = 0) and the differential is
non-singular:
dri(t,u=0) = (hf’| T N)
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Proof of Change of Parameters Lemma
Proof.

e By the inverse function theorem (see next lecture!), for each t, there is
an open set U containing (t,0) and an open set V in R? containing
7(t) such that

My: U=V
is a diffeomorphism with v(t) = I'(t,u = 0).
@ Likewise applying the same argument to o we have

TIW: W Z

is a diffeomorphism with o(s) = X(s,v = 0).
e But now

ot oy = Z_1|C oly=o

is differentiable with differentiable inverse 1| ¢ o X|s—o.
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Straightening

@ The use of the map I is known as straightening the curve v because it
identifies an open set around a point of C with an open set of R? such
that C is identified with the horizontal axis.
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Inverse Function Theorem

@ The key ingredient was the inverse function theorem. We will
investigate this more closely next week.

For now, as an illustration, note that if f : R — R satisfies f/(xp) # 0, then
f is monotone on an interval (xo — €, xp + €) and hence invertible on that
interval. Moreover, the inverse is differentiable. This is precisely the
1-dimensional inverse function theorem.

Notice that if £ : U CR" — V C R" is a diffeomorphism, then since
fof1=1ld, by the chain rule

df odf ' =d(fofl)=dld=Id

and hence df is non-singular. The inverse function theorem is a local
converse.

For example, the function f(x) = x® has f(0) = 0 so cannot be smoothly
invertible near x = 0. However, £~ does exist: f~1(y) = y!/3 which is not
differentiable at y = £(0) = 0.
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Arc Length Parameter

Definition

The arc length parameter s( f |v/(7)] d.

Lemma

The arc length parameter s(t) is smoothly invertible so we may write
t = t(s). Then the parametrisation 7(s) = ~(t(s)) satisfies |¥'| = 1.

Proof.
@ s'(t) = |7/(t)| # 0 hence s is smoothly invertible.
(2]

0s3(s) = 7'(t(5))0st(s) =/ (t(s))

Therefore 057 is unit length as required.

1
s(t(s)) [ (e(s)]
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Arc Length of Curves
Definition
For p, q € [a, b], the arc length along ~ between ~(p) and (q) is

q
(p, q) =/ 17| dt.
p

The total length of v is

b
L) = [/l de = (o)

In the arc length parametrisation s € (0, L(7)),

S2 S2
8(51,52):/ ‘fy’|ds:/ ds = |sp — s1].

S1 S1

Exercise!: Invariance under change of parameters, ¢ : (a, b) — (c, d):

d b
V()] dt= [ [(vop)(u) du
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Length as a Riemann Sum

o leta=1ty<t; <---<ty_1<ty=bbea partition of [a, b].
@ Then for N large, so that for example tj1; — t; = At :=(b—a)/N is
small

I(ti, tip1) ~ |7/ ()| At

@ Then N
b
/a 17/ (t)| dt = Nh_rgo; [/ (ti)] At.

@ That is, the arc length of + is obtained by approximating ~ by short
straight lines and adding up their lengths.
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Polygonal Approximation

o Exercise: Let L; = |y(ti+1) — 7(ti)| be the length of the line segment
joining y(tj+1) to y(t;). Then

b N
/ _ H )
/a 1| dt = Nlinm; L;.

@ Challenge Exercise
b
/ !’y’| dt = supZL,-

where the supremum is taken over all partitions of [a, b].

Paul Bryan MATH704 Differential Geometry 17 /29



Lecture Two: Curves - Curvature

@ Lecture Two: Curves

@ Curvature

Paul Bryan MATH704 Differential Geometry



Geodesic Curvature

@ Parametrise by arc length
e Unit tangent: T =~/ (regularity!)
@ Unit normal: N = J(T) where J is rotation by 7/2.

» Either clockwise or counter-clockwise is fine giving (T, N) = 0. But we
must make a single consistent choice to ensure N is continuous.

Since (T, T) =1 we have

0=0(T, T)=2(0:T, T).

That is
OsT = &N
for some function .
Definition
The geodesic curvature (with respect to N) of v is Kk = (05T, N). J
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Frenet-Serret Frame

e For each point v(t), {T(t), N(t)} is an orthonormal basis for R

e We think of T(t), N(t) as vectors based at ~y(t). As t varies, the base
point varies. For this reason, {T(t), N(t)} is known as a Moving
Frame.

» For curves, this frame is also called the Frenet-Serret Frame.

Lemma (Frenet-Serret Equations)
T 0 w\ /(T
(%)= (5 ) ()

e Exercise: Differentiate (T, N) = 0 to prove the lemma.
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Change of Ambient Orientation

Make the change N(s) = —N(s). This changes the orientation T — N of
R? to the orientation of R2 T — N = —N. That is, it swaps clockwise and
counter-clockwise.

The curvature changes by

FE=(0sT,N) = —(0sT,N) = —k.

The sign of the geodesic curvature is defined only up to a choice of
orientation of R?
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Change of Curve Orientation

Suppose v is parametrised by arc-length on (a, b). Reverse direction and
parametrise by

p(s) =(=s), se(=b,-a)

Then
Tu(s) = 1(s) = —/(~5) = ~ T (~s)
and
Nu(s) = J(Tu(s)) = —I(Ty(=s)) = = N,(s)
Then

Rp(s) = (95 Tu(s), Nu(s)) = (Os[=T5(=9)], =Ny (=5)) = =k (=5).

Reversing the orientation of v (but not of R?) changes the sign of & also!
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Geometric Interpretation

@ The curvature measures the deviation of v from the tangent line
u—y(s)+ uT(s).

e Exercise: Show that k = 0 if and only if y(t) = p + tv is a straight
line.

@ Exercise: Show that k = 1/r for some r > 0 if and only if
v(s) = r(cos(s + sp),sin(s + so)) + p is a circle of radius r centred on

p.
» Hint: It might be helpful to think about the next exercise first.

@ Quadratic Approximation:

1(8) = () + (5 = )7/ () + 55— )7 (%) + -

= 1(50) + (5 — ) T(2) + 5(s — ){s0)N(s0) + -
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The Curvature Determines the Curve

@ Exercise: Show that given any smooth function x, there exists a curve
~ parametrised by arc-length with curvature x. In fact, all such curves
are of the form

(s) = < / cos 6(s)ds, / sine(s)> +p

where p € R? and
0(s) = //@(s)ds + 0o

with 09 € R.
» Hint: Use the fact that T =~/ has unit length hence has the form
T = (cosH(s),sin6(s)) for some smooth function @ (the implicit
function theorem guarantees smoothness). Now determine N in terms
of T and differentiate T to obtain an equation for # in terms of x.
Then finally, integrate T to obtain ~.
@ Exercise: Conclude that all arc-length parametrisations of the unit
circle centered on the origin are of the form

Y(s) = (cos(s + sp),sin(s + sp)).
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Invariance Under Rigid Motion

Definition
A rigid motion of the plane is any affine transformation

T(x)=A-x+b, xcR?

b € R? and where A is an orthogonal matrix. That is

(Ax,Ay) = (x,y) Vx,y € R

@ Exercise: Let v be a regular parametrised curve and define a new
regular parametrised curve u(s) = T(v(s)) = A-~(s) + b.
@ Show that T, =A- T, and N, = £A- N, (the sign depends on
whether A preserves or reverses orientation).
@ Show that if v is parametrised by arc-length, then so is p.
© Show that k,(s) = K(s).

We say that & is invariant under rigid motion.
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Normal and Binormal Vectors

A regular, parametrised space curve is a smooth map ~ : (a, b) — R3 with
/

v # 0.

Unlike for plane curves, we cannot a-priori define a normal vector: Putting

TH(t) ={V eR*: (T(1),V) =0}

is a two-dimensional plane passing through ~(t).

As with plane curves however we may still parametrise by arc-length and
then

1=(T, T)=+"1T.

Therefore, if 4"/ # 0, we may choose a unit normal vector N in T+ and a
binormal vector B € T+ to obtain an oriented basis {T, N, B} of R3:

T(s)=~, N(s)=-L—, B(s)=T(s) x N(s).

o
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Curvature and Torsion
We define the curvature,

k(s) = [1"(s)]-

. . . !
For space curves, we will restrict to the curves with x > 0 so that N = %
is defined.

Here we cannot give a sign to the curvature since we cannot a-priori choose
a normal vectors.

Since B is unit length, 0sB 1. B. Moreover
O0sB=0s(TxN)=T xN+TxN=TxN LT

since T'"=xkN =T x N=0.
Therefore we define the torsion, T by

B' = —71N.
@ Exercise: Since N is unit length, 9;N L N and

ON=—kT+71B
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Frenet-Serret Frame

Now we have a three dimensional frame {T, N, B}.
The Osculating Plane is the plane spanned by T and N.
The Frenet-Serret equations are

T 0 k 0 T
Os|N|=-x 0 7 N
B 0 —7 0 B

@ ~ measures the deviation of v from the tangent line in the osculating
plane.

@ 7 measures the twisting of v away from the osculating plane.
@ A space curve v with k > 0 lies in a plane if and only if 7 = 0.

e Given k > 0 and 7, there exists a unique (up to rigid motion) curve
with the given curvature and torsion.
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