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Regular Parametrised Curves

De�nition

A smooth parametrised curve in the plane is a smooth function

γ : (a, b)→ R2. In addition, γ is regular if γ′(t) 6= 0 for all t ∈ (a, b).

Regularity is very important. It allows us to transfer calculus on (a, b)
to calculus on Image γ := {γ(t) : t ∈ (a, b)} ⊂ R2.

Space curves are the same but in R3.
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Examples of Curves

Example

γ1(t) = (cos(t), sin(t)),−π < t < π.

γ2(t) = (cos(t2), sin(t2),−
√
π < t <

√
π.

Notice that Img(γ1) := {γ1(t) : −π < t < π} = Img(γ2) but γ1 6= γ2. The
�rst is regular, but γ′

2
(0) = 0 so γ2 is not regular.

Example

γ(t) = (t, |t|), t ∈ R.

This time γ is not di�erentiable at t = 0 so is not even a smooth

parametrised curve.
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Examples of Curves

Example

γ(t) = (t3, t2), t ∈ R.

We have Img(γ) = {y = x2/3} has a cusp at t = 0. This time, there is no

regular parametrisation of Img(γ)! See the implicit function theorem.

Example

γ(t) = (t3 − 4t, t2 − 4).

Here γ is regular, but it is not one-to-one. That is, it crosses itself.

Example

γ(t) = (cos(t), sin(t)).

Here γ is one-to-one on (0, 2π) but not on any larger interval. However,

γ(k)(0) = γ(k)(2π) so that γ smoothly closes up to give a closed curve.

Any smooth periodic function satis�es this property.
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Change of Parameters

Let γ : (a, b)→ R2 and σ : (c , d)→ R2 be regular parametrisations

with C := Img γ = Img σ.

Assume for the moment that γ and σ are one-to-one so that

γ−1 : C → (a, b) is de�ned and σ−1 : C → (c , d) is de�ned.

We call ϕ = σ−1 ◦ γ : (a, b)→ (c , d) the change of parameters.

Lemma

The function ϕ is a di�eomorphism. That is, it is a smooth function with

smooth inverse.
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Di�erential of Change of Parameters

Proof.

Let T = γ′/ |γ′| be the unit tangent (regularity!) and N = J(T ) be

the unit normal with J rotation by π/2.

De�ne the function

Γ(t, u) = γ(t) + uN(t).

The di�erential is the matrix

dΓ =
(
γ′ + uN ′ N

)
Note here we have two columns!

Now observe that γ(t) = Γ(t, u = 0) and the di�erential is

non-singular:

dΓ(t, u = 0) =
(
|γ′|T N

)
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Proof of Change of Parameters Lemma

Proof.

By the inverse function theorem (see next lecture!), for each t, there is
an open set U containing (t, 0) and an open set V in R2 containing

γ(t) such that

Γ|U : U →
'

V

is a di�eomorphism with γ(t) = Γ(t, u = 0).

Likewise applying the same argument to σ we have

Σ|W : W → Z

is a di�eomorphism with σ(s) = Σ(s, v = 0).

But now

σ−1 ◦ γ = Σ−1|C ◦ Γ|u=0

is di�erentiable with di�erentiable inverse Γ−1|C ◦ Σ|s=0.
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Straightening

The use of the map Γ is known as straightening the curve γ because it

identi�es an open set around a point of C with an open set of R2 such

that C is identi�ed with the horizontal axis.
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Inverse Function Theorem

The key ingredient was the inverse function theorem. We will

investigate this more closely next week.

For now, as an illustration, note that if f : R→ R satis�es f ′(x0) 6= 0, then

f is monotone on an interval (x0 − ε, x0 + ε) and hence invertible on that

interval. Moreover, the inverse is di�erentiable. This is precisely the

1-dimensional inverse function theorem.

Notice that if f : U ⊆ Rn → V ⊆ Rn is a di�eomorphism, then since

f ◦ f −1 = Id, by the chain rule

df ◦ df −1 = d(f ◦ f −1) = d Id = Id

and hence df is non-singular. The inverse function theorem is a local

converse.

For example, the function f (x) = x3 has f ′(0) = 0 so cannot be smoothly

invertible near x = 0. However, f −1 does exist: f −1(y) = y1/3 which is not

di�erentiable at y = f (0) = 0.
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Arc Length Parameter

De�nition

The arc length parameter s(t) =
∫ t
a |γ

′(τ)| dτ .

Lemma

The arc length parameter s(t) is smoothly invertible so we may write

t = t(s). Then the parametrisation γ̄(s) = γ(t(s)) satis�es |γ̄′| ≡ 1.

Proof.
1 s ′(t) = |γ′(t)| 6= 0 hence s is smoothly invertible.

2

∂s γ̄(s) = γ′(t(s))∂st(s) = γ′(t(s))
1

s ′(t(s))
=

γ′(t(s))

|γ′(t(s))|
.

Therefore ∂s γ̄ is unit length as required.
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Arc Length of Curves

De�nition

For p, q ∈ [a, b], the arc length along γ between γ(p) and γ(q) is

`(p, q) =

∫ q

p

∣∣γ′∣∣ dt.
The total length of γ is

L(γ) =

∫ b

a

∣∣γ′∣∣ dt = s(b).

In the arc length parametrisation s ∈ (0, L(γ)),

`(s1, s2) =

∫ s2

s1

∣∣γ′∣∣ ds =

∫ s2

s1

ds = |s2 − s1| .

Exercise!: Invariance under change of parameters, ϕ : (a, b)→ (c , d):∫ d

c

∣∣γ′(t)
∣∣ dt =

∫ b

a

∣∣(γ ◦ ϕ)′(u)
∣∣ du
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Length as a Riemann Sum

Let a = t0 < t1 < · · · < tN−1 < tN = b be a partition of [a, b].

Then for N large, so that for example ti+1 − ti = ∆t := (b − a)/N is

small

l(ti , ti+1) '
∣∣γ′(ti )∣∣∆t

Then ∫ b

a

∣∣γ′(t)
∣∣ dt = lim

N→∞

N∑
i=1

∣∣γ′(ti )∣∣∆t.

That is, the arc length of γ is obtained by approximating γ by short

straight lines and adding up their lengths.
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Polygonal Approximation

Exercise: Let Li = |γ(ti+1)− γ(ti )| be the length of the line segment

joining γ(ti+1) to γ(ti ). Then∫ b

a

∣∣γ′∣∣ dt = lim
N→∞

N∑
i=1

Li .

Challenge Exercise ∫ b

a

∣∣γ′∣∣ dt = sup
∑
i

Li

where the supremum is taken over all partitions of [a, b].
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Geodesic Curvature

Parametrise by arc length

Unit tangent: T = γ′ (regularity!)

Unit normal: N = J(T ) where J is rotation by π/2.
I Either clockwise or counter-clockwise is �ne giving 〈T ,N〉 = 0. But we

must make a single consistent choice to ensure N is continuous.

Since 〈T ,T 〉 ≡ 1 we have

0 = ∂s〈T ,T 〉 = 2〈∂sT ,T 〉.

That is

∂sT = κN

for some function κ.

De�nition

The geodesic curvature (with respect to N) of γ is κ = 〈∂sT ,N〉.
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Frenet-Serret Frame

For each point γ(t), {T (t),N(t)} is an orthonormal basis for R2.

We think of T (t),N(t) as vectors based at γ(t). As t varies, the base
point varies. For this reason, {T (t),N(t)} is known as a Moving
Frame.

I For curves, this frame is also called the Frenet-Serret Frame.

Lemma (Frenet-Serret Equations)

∂s

(
T
N

)
=

(
0 κ
−κ 0

)(
T
N

)

Exercise: Di�erentiate 〈T ,N〉 = 0 to prove the lemma.
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Change of Ambient Orientation

Make the change N̄(s) = −N(s). This changes the orientation T → N of

R2 to the orientation of R2 T → N̄ = −N. That is, it swaps clockwise and

counter-clockwise.

The curvature changes by

κ̄ = 〈∂sT , N̄〉 = −〈∂sT ,N〉 = −κ.

The sign of the geodesic curvature is de�ned only up to a choice of

orientation of R2
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Change of Curve Orientation

Suppose γ is parametrised by arc-length on (a, b). Reverse direction and

parametrise by

µ(s) = γ(−s), s ∈ (−b,−a).

Then

Tµ(s) = µ′(s) = −γ′(−s) = −Tγ(−s).

and

Nµ(s) = J(Tµ(s)) = −J(Tγ(−s)) = −Nγ(s).

Then

κµ(s) = 〈∂sTµ(s),Nµ(s)〉 = 〈∂s [−Tγ(−s)],−Nγ(−s)〉 = −κγ(−s).

Reversing the orientation of γ (but not of R2) changes the sign of κ also!
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Geometric Interpretation

The curvature measures the deviation of γ from the tangent line

u 7→ γ(s) + uT (s).

Exercise: Show that κ ≡ 0 if and only if γ(t) = p + tv is a straight

line.

Exercise: Show that κ ≡ 1/r for some r > 0 if and only if
γ(s) = r(cos(s + s0), sin(s + s0)) + p is a circle of radius r centred on
p.

I Hint: It might be helpful to think about the next exercise �rst.

Quadratic Approximation:

γ(s) = γ(s0) + (s − s0)γ′(s0) +
1

2
(s − s0)2γ′′(s0) + · · ·

= γ(s0) + (s − s0)T (s0) +
1

2
(s − s0)2κ(s0)N(s0) + · · ·
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The Curvature Determines the Curve

Exercise: Show that given any smooth function κ, there exists a curve

γ parametrised by arc-length with curvature κ. In fact, all such curves

are of the form

γ(s) =

(∫
cos θ(s)ds,

∫
sin θ(s)

)
+ p

where p ∈ R2 and

θ(s) =

∫
κ(s)ds + θ0

with θ0 ∈ R.
I Hint: Use the fact that T = γ′ has unit length hence has the form

T = (cos θ(s), sin θ(s)) for some smooth function θ (the implicit
function theorem guarantees smoothness). Now determine N in terms
of T and di�erentiate T to obtain an equation for θ in terms of κ.
Then �nally, integrate T to obtain γ.

Exercise: Conclude that all arc-length parametrisations of the unit

circle centered on the origin are of the form

γ(s) = (cos(s + s0), sin(s + s0)).

I This may also be proven more directly from the assumption that γ(s)
and γ′(s) have unit length.
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Invariance Under Rigid Motion

De�nition

A rigid motion of the plane is any a�ne transformation

T (x) = A · x + b, x ∈ R2

b ∈ R2 and where A is an orthogonal matrix. That is

〈Ax ,Ay〉 = 〈x , y〉 ∀x , y ∈ R2.

Exercise: Let γ be a regular parametrised curve and de�ne a new
regular parametrised curve µ(s) = T (γ(s)) = A · γ(s) + b.

1 Show that Tµ = A · Tγ and Nµ = ±A · Nγ (the sign depends on
whether A preserves or reverses orientation).

2 Show that if γ is parametrised by arc-length, then so is µ.
3 Show that κµ(s) = κγ(s).

We say that κ is invariant under rigid motion.
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Normal and Binormal Vectors

A regular, parametrised space curve is a smooth map γ : (a, b)→ R3 with

γ′ 6= 0.

Unlike for plane curves, we cannot a-priori de�ne a normal vector: Putting

T = γ′/ |γ′|,
T⊥(t) = {V ∈ R2 : 〈T (t),V 〉 = 0}

is a two-dimensional plane passing through γ(t).
As with plane curves however we may still parametrise by arc-length and

then

1 ≡ 〈T ,T 〉 ⇒ γ′′ ⊥ T .

Therefore, if γ′′ 6= 0, we may choose a unit normal vector N in T⊥ and a

binormal vector B ∈ T⊥ to obtain an oriented basis {T ,N,B} of R3:

T (s) = γ′, N(s) =
γ′′

|γ′′|
, B(s) = T (s)× N(s).
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Curvature and Torsion
We de�ne the curvature,

κ(s) =
∣∣γ′′(s)

∣∣ .
For space curves, we will restrict to the curves with κ > 0 so that N = γ′

κ
is de�ned.

Here we cannot give a sign to the curvature since we cannot a-priori choose

a normal vectors.

Since B is unit length, ∂sB ⊥ B . Moreover

∂sB = ∂s(T × N) = T ′ × N + T × N ′ = T × N ′ ⊥ T

since T ′ = κN ⇒ T ′ × N = 0.

Therefore we de�ne the torsion, τ by

B ′ = −τN.

Exercise: Since N is unit length, ∂sN ⊥ N and

∂sN = −κT + τB
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Frenet-Serret Frame

Now we have a three dimensional frame {T ,N,B}.
The Osculating Plane is the plane spanned by T and N.

The Frenet-Serret equations are

∂s

T
N
B

 =

 0 κ 0

−κ 0 τ
0 −τ 0

T
N
B


κ measures the deviation of γ from the tangent line in the osculating

plane.

τ measures the twisting of γ away from the osculating plane.

A space curve γ with κ > 0 lies in a plane if and only if τ ≡ 0.

Given κ > 0 and τ , there exists a unique (up to rigid motion) curve

with the given curvature and torsion.
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