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Geometric Interpretation

@ The curvature measures the deviation of v from the tangent line
u—y(s)+ uT(s).

e Exercise: Show that k = 0 if and only if y(t) = p + tv is a straight
line.

@ Exercise: Show that k = 1/r for some r > 0 if and only if
v(s) = r(cos(s + sp),sin(s + so)) + p is a circle of radius r centred on

p.
» Hint: It might be helpful to think about the next exercise first.

@ Quadratic Approximation:

1(8) = () + (5 = )7/ () + 55— )7 (%) + -

= 1(50) + (5 — ) T(2) + 5(s — ){s0)N(s0) + -
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The Curvature Determines the Curve

@ Exercise: Show that given any smooth function x, there exists a curve
~ parametrised by arc-length with curvature x. In fact, all such curves
are of the form

(s) = < / cos 6(s)ds, / sine(s)> +p

where p € R? and
0(s) = //@(s)ds + 0o

with 09 € R.
» Hint: Use the fact that T =~/ has unit length hence has the form
T = (cosH(s),sin6(s)) for some smooth function @ (the implicit
function theorem guarantees smoothness). Now determine N in terms
of T and differentiate T to obtain an equation for # in terms of x.
Then finally, integrate T to obtain ~.
@ Exercise: Conclude that all arc-length parametrisations of the unit
circle centered on the origin are of the form

Y(s) = (cos(s + sp),sin(s + sp)).
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Invariance Under Rigid Motion

Definition
A rigid motion of the plane is any affine transformation

T(x)=A-x+b, xcR?

b € R? and where A is an orthogonal matrix. That is

(Ax,Ay) = (x,y) Vx,y € R

@ Exercise: Let v be a regular parametrised curve and define a new
regular parametrised curve u(s) = T(v(s)) = A-~(s) + b.
@ Show that T, =A- T, and N, = £A- N, (the sign depends on
whether A preserves or reverses orientation).
@ Show that if v is parametrised by arc-length, then so is p.
© Show that k,(s) = K(s).

We say that & is invariant under rigid motion.
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Normal and Binormal Vectors

A regular, parametrised space curve is a smooth map ~ : (a, b) — R3 with
/

v # 0.

Unlike for plane curves, we cannot a-priori define a normal vector: Putting

TH(t) ={V eR*: (T(1),V) =0}

is a two-dimensional plane passing through ~(t).

As with plane curves however we may still parametrise by arc-length and
then

1=(T, T)=+"1T.

Therefore, if 4"/ # 0, we may choose a unit normal vector N in T+ and a
binormal vector B € T+ to obtain an oriented basis {T, N, B} of R3:

T(s)=~, N(s)=-L—, B(s)=T(s) x N(s).

o
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Curvature and Torsion
We define the curvature,

k(s) = [1"(s)]-

. . . !
For space curves, we will restrict to the curves with x > 0 so that N = %
is defined.

Here we cannot give a sign to the curvature since we cannot a-priori choose
a normal vectors.

Since B is unit length, 0sB 1. B. Moreover
O0sB=0s(TxN)=T xN+TxN=TxN LT

since T'"=xkN =T x N=0.
Therefore we define the torsion, T by

B' = —71N.
@ Exercise: Since N is unit length, 9;N L N and

ON=—kT+71B
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Frenet-Serret Frame

Now we have a three dimensional frame {T, N, B}.
The Osculating Plane is the plane spanned by T and N.
The Frenet-Serret equations are

T 0 k 0 T
Os|N|=-x 0 7 N
B 0 —7 0 B

@ ~ measures the deviation of v from the tangent line in the osculating
plane.

@ 7 measures the twisting of v away from the osculating plane.
@ A space curve v with k > 0 lies in a plane if and only if 7 = 0.

e Given k > 0 and 7, there exists a unique (up to rigid motion) curve
with the given curvature and torsion.
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Jordan Curve Theorem
Definition
Let v : (a, b) — R? be a smooth curve. We say v is simple if 7 is

one-to-one. We say v is closed if v(a) = v(b) and likewise
k) (a) = 4K (b) for all k € N.

Theorem (Jordan Curve Theorem)

Let v be a simple, closed curve. Then y divides the plane into two regions
- one bounded and one unbounded. That is, there exists two disjoint,
connected open sets Q and N with 0Q = ON = ~ such that

© There exists an R > 0 such that Q C Bg(0), and
Q@ R? = QU CUA where C = Img(y) and the union is a disjoint union.

Remark

Necessarily, A is unbounded in the sense that A is not contained in any
Bgr(0).
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Proofs of the Jordan Curve Theorem

@ The hard part of the theorem is that it applies to continuous curves.

@ Thus v could be for example nowhere differentiable such as a fractal.

@ A proof in the piecewise smooth case (i.e. where  is continuous and
smooth away from at most finitely many points) can be found here:
The Jordan Curve Theorem for Piecewise Smooth Curves, R. N. Pederson, The American Mathematical
Monthly Vol. 76, No. 6 (Jun. - Jul., 1969), pp. 605-610
The idea is that «y is locally two-sided: the tangent line divides the
plane into the two sides. Thus one normal points inward while the
other points outward.

@ A reasonably elementary general proof may be found here: The sordan

Curve Theorem Via the Brouwer Fixed Point Theorem, Ryuji Maehara, The American Mathematical
Monthly, Vol. 91, No. 10 (Dec., 1984), pp. 641-643

o More generally the theorem holds for embedded spheres S" «— R

@ See https://en.wikipedia.org/wiki/Jordan_curve_theorem for
more details.
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Isoperimetric Inequality

@ Let v be a simple, closed curve and €2 the bounded region enclosed by
Y.

Theorem (Isoperimetric Inequality)

We have
L2
A=A

where L is the length of v and A is the enclosed area, i.e. the area of ().
Moreover, equality occurs if and only if v is a (round) circle.

@ The circle encloses the most area for a given perimeter. Equivalently,
the circle has the least perimeter for a given area.

@ Look up "Queen Dido"!
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Isoperimetric Inequality

Proof.

Recall the Divergence Theorem:

/divX dxdy = /(x, N)ds.
Q

Y

Let X(x,y) = (x,y) so that divX = Oxx + 0,y = 2.
Then

2A = /(X, N)ds < / |X|ds (Pointwise Cauchy Schwartz)
gl 2l

1/2 1/2

< (/ 1X|? ds) (/ 12ds) (L? Cauchy Schwartz)
1/2

= (/ |X|2ds) L2,
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Isoperimetric Inequality

Proof.
Write v(s) = (x(s), y(s)) and translate:

(x(5), (s)) = (x(s) + u,y(s) + v)-

Notice that:

@ L and A are invariant under translation.

Q lim, 100 x(s ) + u = £oo uniformly in s. Therefore there exists a u
such that [ x(s)ds = 0. Likewise, there is a v such that [ y(s)ds = 0.

Then since x is periodic and [ xds = 0, we may apply Wirtinger’s

Inequality:
L
4
/ (x')2ds > i x2ds
0

and likewise for y.
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Isoperimetric Inequality

Proof.
Thus

1/2 1/2
2A < /2 (/|X|2ds) = [1/? (/X2-|-y2ds)
1/2
( /(x (y )2ds) (Wirtinger)

L
— L1/22_L1/2 arc length: (X’)2 + (y,)2 =1
T

L2
= %.
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Theorem of Turning Tangents

Theorem (Turning Tangents)

Let v be a simple, closed curve. Then

//@ds = 327
¥

Proof.

Since | T| = 1 we may write

T(s) = (cos(s),sinb(s)).

By the implicit function theorem, the function 6 is smooth.
By the chain rule and the Frenet-Serret formula

0'(—sinf,cosf) = s T = kN.
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Theorem of Turning Tangents

Proof.

But N = (—sinf, cosf) and hence ¢’ = k.
Then

L L
/O o = /0 0/(s)ds = 6(L) — 0(0).
Since 7 is closed, (cosé(L),sinf(L)) = (cosd(0),sinf(0)). Therefore

/Llids — 6(L) — 6(0) = 27n
0

for some integer n € Z.

The integer n is known as the winding number of . A topological result
says for a simple closed curve n = +1 with the sign depending on the
orientation. Ol

v
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