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Geometric Interpretation

The curvature measures the deviation of γ from the tangent line

u 7→ γ(s) + uT (s).

Exercise: Show that κ ≡ 0 if and only if γ(t) = p + tv is a straight

line.

Exercise: Show that κ ≡ 1/r for some r > 0 if and only if
γ(s) = r(cos(s + s0), sin(s + s0)) + p is a circle of radius r centred on
p.

I Hint: It might be helpful to think about the next exercise �rst.

Quadratic Approximation:

γ(s) = γ(s0) + (s − s0)γ′(s0) +
1

2
(s − s0)2γ′′(s0) + · · ·

= γ(s0) + (s − s0)T (s0) +
1

2
(s − s0)2κ(s0)N(s0) + · · ·
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The Curvature Determines the Curve

Exercise: Show that given any smooth function κ, there exists a curve

γ parametrised by arc-length with curvature κ. In fact, all such curves

are of the form

γ(s) =

(∫
cos θ(s)ds,

∫
sin θ(s)

)
+ p

where p ∈ R2 and

θ(s) =

∫
κ(s)ds + θ0

with θ0 ∈ R.
I Hint: Use the fact that T = γ′ has unit length hence has the form

T = (cos θ(s), sin θ(s)) for some smooth function θ (the implicit
function theorem guarantees smoothness). Now determine N in terms
of T and di�erentiate T to obtain an equation for θ in terms of κ.
Then �nally, integrate T to obtain γ.

Exercise: Conclude that all arc-length parametrisations of the unit

circle centered on the origin are of the form

γ(s) = (cos(s + s0), sin(s + s0)).

I This may also be proven more directly from the assumption that γ(s)
and γ′(s) have unit length.
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Invariance Under Rigid Motion

De�nition

A rigid motion of the plane is any a�ne transformation

T (x) = A · x + b, x ∈ R2

b ∈ R2 and where A is an orthogonal matrix. That is

〈Ax ,Ay〉 = 〈x , y〉 ∀x , y ∈ R2.

Exercise: Let γ be a regular parametrised curve and de�ne a new
regular parametrised curve µ(s) = T (γ(s)) = A · γ(s) + b.

1 Show that Tµ = A · Tγ and Nµ = ±A · Nγ (the sign depends on
whether A preserves or reverses orientation).

2 Show that if γ is parametrised by arc-length, then so is µ.
3 Show that κµ(s) = κγ(s).

We say that κ is invariant under rigid motion.
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Normal and Binormal Vectors

A regular, parametrised space curve is a smooth map γ : (a, b)→ R3 with

γ′ 6= 0.

Unlike for plane curves, we cannot a-priori de�ne a normal vector: Putting

T = γ′/ |γ′|,
T⊥(t) = {V ∈ R2 : 〈T (t),V 〉 = 0}

is a two-dimensional plane passing through γ(t).
As with plane curves however we may still parametrise by arc-length and

then

1 ≡ 〈T ,T 〉 ⇒ γ′′ ⊥ T .

Therefore, if γ′′ 6= 0, we may choose a unit normal vector N in T⊥ and a

binormal vector B ∈ T⊥ to obtain an oriented basis {T ,N,B} of R3:

T (s) = γ′, N(s) =
γ′′

|γ′′|
, B(s) = T (s)× N(s).
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Curvature and Torsion
We de�ne the curvature,

κ(s) =
∣∣γ′′(s)

∣∣ .
For space curves, we will restrict to the curves with κ > 0 so that N = γ′

κ
is de�ned.

Here we cannot give a sign to the curvature since we cannot a-priori choose

a normal vectors.

Since B is unit length, ∂sB ⊥ B . Moreover

∂sB = ∂s(T × N) = T ′ × N + T × N ′ = T × N ′ ⊥ T

since T ′ = κN ⇒ T ′ × N = 0.

Therefore we de�ne the torsion, τ by

B ′ = −τN.

Exercise: Since N is unit length, ∂sN ⊥ N and

∂sN = −κT + τB
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Frenet-Serret Frame

Now we have a three dimensional frame {T ,N,B}.
The Osculating Plane is the plane spanned by T and N.

The Frenet-Serret equations are

∂s

T
N
B

 =

 0 κ 0

−κ 0 τ
0 −τ 0

T
N
B


κ measures the deviation of γ from the tangent line in the osculating

plane.

τ measures the twisting of γ away from the osculating plane.

A space curve γ with κ > 0 lies in a plane if and only if τ ≡ 0.

Given κ > 0 and τ , there exists a unique (up to rigid motion) curve

with the given curvature and torsion.
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Jordan Curve Theorem

De�nition

Let γ : (a, b)→ R2 be a smooth curve. We say γ is simple if γ is

one-to-one. We say γ is closed if γ(a) = γ(b) and likewise

γ(k)(a) = γ(k)(b) for all k ∈ N.

Theorem (Jordan Curve Theorem)

Let γ be a simple, closed curve. Then γ divides the plane into two regions

- one bounded and one unbounded. That is, there exists two disjoint,

connected open sets Ω and Λ with ∂Ω = ∂Λ = γ such that

1 There exists an R > 0 such that Ω ⊆ BR(0), and

2 R2 = Ω t C t Λ where C = Img(γ) and the union is a disjoint union.

Remark

Necessarily, Λ is unbounded in the sense that Λ is not contained in any

BR(0).
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Proofs of the Jordan Curve Theorem

The hard part of the theorem is that it applies to continuous curves.

Thus γ could be for example nowhere di�erentiable such as a fractal.

A proof in the piecewise smooth case (i.e. where γ is continuous and
smooth away from at most �nitely many points) can be found here:
The Jordan Curve Theorem for Piecewise Smooth Curves, R. N. Pederson, The American Mathematical
Monthly Vol. 76, No. 6 (Jun. - Jul., 1969), pp. 605-610

The idea is that γ is locally two-sided: the tangent line divides the

plane into the two sides. Thus one normal points inward while the

other points outward.

A reasonably elementary general proof may be found here: The Jordan
Curve Theorem Via the Brouwer Fixed Point Theorem, Ryuji Maehara, The American Mathematical
Monthly, Vol. 91, No. 10 (Dec., 1984), pp. 641-643

More generally the theorem holds for embedded spheres Sn ↪→ Rn+1.

See https://en.wikipedia.org/wiki/Jordan_curve_theorem for

more details.
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Isoperimetric Inequality

Let γ be a simple, closed curve and Ω the bounded region enclosed by

γ.

Theorem (Isoperimetric Inequality)

We have
L2

A
≥ 4π

where L is the length of γ and A is the enclosed area, i.e. the area of Ω.

Moreover, equality occurs if and only if γ is a (round) circle.

The circle encloses the most area for a given perimeter. Equivalently,

the circle has the least perimeter for a given area.

Look up "Queen Dido"!
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Isoperimetric Inequality

Proof.

Recall the Divergence Theorem:∫
Ω

divX dxdy =

∫
γ
〈X ,N〉ds.

Let X (x , y) = (x , y) so that divX = ∂xx + ∂yy = 2.

Then

2A =

∫
γ
〈X ,N〉ds ≤

∫
γ
|X | ds (Pointwise Cauchy Schwartz)

≤
(∫
|X |2 ds

)1/2(∫
12ds

)1/2

(L2 Cauchy Schwartz)

=

(∫
|X |2 ds

)1/2

L1/2.
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Isoperimetric Inequality

Proof.

Write γ(s) = (x(s), y(s)) and translate:

(x(s), y(s)) 7→ (x(s) + u, y(s) + v).

Notice that:

1 L and A are invariant under translation.

2 limu→±∞ x(s) + u = ±∞ uniformly in s. Therefore there exists a u
such that

∫
x(s)ds = 0. Likewise, there is a v such that

∫
y(s)ds = 0.

Then since x is periodic and
∫
xds = 0, we may apply Wirtinger's

Inequality: ∫ L

0

(x ′)2ds ≥ 4π2

L2

∫ L

0

x2ds

and likewise for y .
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Isoperimetric Inequality

Proof.

Thus

2A ≤ L1/2
(∫
|X |2 ds

)1/2

= L1/2
(∫

x2 + y2ds

)1/2

≤ L1/2
(

L2

4π2

∫
(x ′)2 + (y ′)2ds

)1/2

(Wirtinger)

= L1/2
L

2π
L1/2 arc length: (x ′)2 + (y ′)2 = 1

=
L2

2π
.
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Theorem of Turning Tangents

Theorem (Turning Tangents)

Let γ be a simple, closed curve. Then∫
γ
κds = ±2π.

Proof.

Since |T | ≡ 1 we may write

T (s) = (cos θ(s), sin θ(s)).

By the implicit function theorem, the function θ is smooth.

By the chain rule and the Frenet-Serret formula

θ′(− sin θ, cos θ) = ∂sT = κN.
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Theorem of Turning Tangents

Proof.

But N = (− sin θ, cos θ) and hence θ′ = κ.
Then ∫ L

0

κds =

∫ L

0

θ′(s)ds = θ(L)− θ(0).

Since γ is closed, (cos θ(L), sin θ(L)) = (cos θ(0), sin θ(0)). Therefore∫ L

0

κds = θ(L)− θ(0) = 2πn

for some integer n ∈ Z.
The integer n is known as the winding number of γ. A topological result

says for a simple closed curve n = ±1 with the sign depending on the

orientation.
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