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Open and closed balls and spheres

De�nition

Given r > 0 and x ∈ Rn, the open ball of radius r and centre x is the set

Br (x) = {y ∈ Rn : |x − y | < r}.

The closed ball of radius r and centre x is the set

B̄r (x) = {y ∈ Rn : |x − y | ≤ r}.

The sphere of radius r and centre x is the set

Sr (x) = {y ∈ Rn : |x − y | = r}.
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Distance function

Recall the distance |x − y | is de�ned to be

|x − y | =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

where x = (x1, . . . , xn) and y = (y1, . . . , yn).

The open ball is the set of points of distance to x strictly less than r .

The closed ball is the set of points of distance to x less than or equal
to r .

The sphere is the set of points of distance to x equal to r .

It is sometimes said that analysis is simply applications of the triangle
inequality:

|x − y | ≤ |x − z |+ |z − y | .
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Open and closed sets

De�nition

A set U ⊂ Rn is said to be open provided for every x ∈ U, there exists an
r = r(x) such that

Br (x) ⊆ U.

A set C is closed if it's complement,

Rn \C := {y ∈ Rn : y /∈ C}

is open.

By this de�nition, open balls are open, closed balls are closed and
spheres are closed.

Given any point of an open set, we can always move /uniformly/ a
little in any direction and remain in the open set.
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Bounded and compact sets

De�nition

A set S ⊆ Rn is bounded if there exists an x ∈ Rn and an r > 0 such that
S ⊆ Br (x).
A set K ⊆ Rn is compact if it is closed and bounded.

A set S ⊆ Rn is bounded if and only if, for every x ∈ Rn there exists
an r = r(x) such that S ⊆ Br (x). This follows by the triangle
inequality.

A set K ⊆ Rn is compact if and only if for every open cover {Uα},
there exists a �nite subcover.

I An open cover is a collection of open sets {Uα} such that K ⊆ ∪α Uα.
I A �nite subcover is a �nite number of sets Uα1

, · · · ,UαN
from the

collection such that K ⊆ ∪Ni=1
Uαi .

I This equivalent condition of compactness is the general de�nition for

topological spaces but is equivalent in the case of Rn.
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Limits

De�nition

A sequence (xn)n∈N ⊆ Rn converges to x ∈ Rn if for every ε > 0, there
exists a N ∈ N such that (xn)n≥N ⊆ Bε(x). We write limn→∞ xn = x .

De�nition

The sequence (xn) is Cauchy if for every ε > 0, there exists a N ∈ N such
that (xm)m≥N ⊆ Bε(xn) for every n ≥ N.

Remark

The condition for convergence to x says that |x − xn| < ε for n ≥ N.
The condition to be a Cauchy sequence says that |xn − xm| < ε for
m, n ≥ N.

Paul Bryan MATH704 Di�erential Geometry 9 / 41



Continuity
Here are some equivalent de�nitions of continuity.

De�nition (Sequential de�nition)

A function f : Rn → Rm is continuous at x ∈ Rn if for every sequence (xn)
with limn→∞ = x we have limn→∞ f (xn) = f (x).

De�nition (ε-δ de�nition)

Write
lim
x→x0

f (x) = y

provided for every ε > 0, there exists a δ > 0 such that f (Bδ(x0)) ⊆ Bε(y).
Then f is continuous at x0 if limx→x0 f (x) = f (x0).

De�nition (Topological de�nition)

The function f is continuous (at every x0) if f
−1(V ) is an open set for

every open set V ⊆ Rm.

Paul Bryan MATH704 Di�erential Geometry 10 / 41



Continuity

The �rst de�nition requires that f (xn)→ f (x) for every sequence.

The condition in the second de�nition that f (Bδ(x0)) ⊆ Bε(y) is the
same thing as |f (x)− f (x0)| < ε whenever |x − x0| < δ.

The second de�nition says that given any tolerance ε > 0, there is an
adjustment δ > 0 so that provided we are su�ciently close to x0 (i.e.
|x − x0| < δ), then f (x) is within the desired tolerance of f (x0) (i.e.
|f (x)− f (x0)| < ε.

The equivalence of the �rst and second de�nitions is a standard
exercise in analysis using the completeness of the real numbers R.
The �nal de�nition is the general topological de�nition.

The equivalence of the topological and ε-δ de�nitions follows by
writing U = ∪y∈U Br(y)(y) as a union of open balls and using
properties of the pull-back f −1.
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A cautionary example

Let

f (x , y) =

{
x2y

x4+y2
, (x , y) 6= (0, 0)

0, (x , y) = (0, 0).

Then f is not continuous at (x , y) = (0, 0).
However, along every straight line through the origin y = ax , the limit is in
fact 0! That is,

lim
t→0

f (t, at) = lim
t→0

t2 · at
t4 + a2t2

= lim
t→0

t2

t2
at

t2 + a2
= 0.

But along the curve y = x2, we get something else:

lim
t→0

f (t, t2) = lim
t→0

t2 · t2

t4 + (t2)2
= lim

t→0

t4

t4
1

2
=

1

2
.
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Partial derivatives

De�nition

The i 'th partial derivative of a function f : Rn → R at x = (x1, . . . , xn) is

∂i f (x) =
∂f

∂x i
(x) = lim

h→0

f (x1, . . . , x i−1, x i + h, x i+1, . . . xn)− f (x1, . . . , xn)

h
.

whenever the limit exists.

The partial derivative is simply the usual derivative of a function of one
variable holding all other variables �xed.
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Directional derivatives

De�nition

Let X = (X 1, . . . ,X n) ∈ Rn. The directional derivative dfx · X of f at x in
the direction X is

∂X f (x) = ∂t |t=0f (x + tX ) = lim
h→0

f (x + hX )− f (x)

h
.

The partial derivative is simply the directional derivative with X = ei where
ei = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the i 'th position is the so-called
i 'th basis vector.
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The Di�erential
Recall that Taylor's theorem with remainder states that

f (x) = f (x0) + f ′(x0)(x − x0) + Rx0(x)

where

lim
x→x0

|Rx0(x)|
x − x0

= 0.

We write Rx0(x) = o(x) as x → x0.

De�nition

We say f : Rn → Rm is di�erentiable at x0 if there exists a linear map
Lx0 : Rn → Rm such that

lim
x→x0

|f (x)− f (x0)− Lx0 · (x − x0)|
|x − x0|

= 0.

That is, there exists a linear map written Lx0 = dfx0 such that

f (x) = f (x0) + dfx0 · (x − x0) + o(|x − x0|), as x → x0.
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Di�erentiable imples partial derivatives exist
Let f be di�erentiable at x0 = (x1

0
, . . . , xn

0
). For h 6= 0, let

x = (x1
0
, . . . , x i−1

0
, x i

0
+ h, x i+1

0
, . . . , xn

0
) = x0 + hei . We have

∂i f (x0) = lim
h→0

f (x0 + hei )− f (x0)

h

provided the limit exists. Di�erentiability ensures that

0 = lim
h→0

∣∣∣∣ f (x0 + hei )− f (x0)

h
− dfx0 · hei

h

∣∣∣∣
and hence

lim
h→0

f (x0 + hei )− f (x0)

h
= lim

h→0

1

h
dfx0 · hei = dfx0 · ei .

exists.

Exercise: Show that the same argument proves ∂X f (x0) = dfx0(X )
exists.
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A cautionary example

Let

f (x , y) =

{
xy

x2+y2
, (x , y) 6= (0, 0)

0, (x , y) = (0, 0).

Notice that

∂x f (0, 0) = ∂t |t=0f (t, 0) = ∂t |t=0

t · 0
t2 + 02

= 0.

Likewise ∂y f (0, 0) = 0.
However,

∂(1,1)f (0, 0) = ∂t |t=0f (t, t) = lim
t→0

1

t
(f (t, t)− f (0, 0))

is unde�ned since f (t, t) = t2/(t2 + t2) = 1/2.
De�ning, f (0, 0) = 1/2 doesn't help because then ∂(1,2)f (0, 0) doesn't
exist. In fact, f is not even continuous at (0, 0).
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C 1 functions

De�nition

A function f : Rn → Rm is C 1 (i.e. has continuous derivative) if f is
di�erentiable at each x and moreover, the map

x 7→ dfx

is continuous. This is equivalent to having /continuous/ partial derivatives.

Note here that dfx is a linear map Rn → Rm and the set of all these is
linearly isomorphic to the space Mn,m of n by m matrices, which is itself
linearly isomorphic to Rnm (index by i , j with 1 ≤ i ≤ n and 1 ≤ j ≤ m).
Concretely we may realise dfx as the matrix

(dfx)ij = ∂i f
j(x) since dfx · ei = ∂i f (x) = (∂i f

1, . . . , ∂i f
n).

Then df : Rn → Rnm is a map between Euclidean spaces so we can ask if
it's di�erentiable. Then f is C 2 if d2f is C 1 and more generally, f is C k if
dk f is continuous.
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Chain Rule

Theorem (Chain Rule)

The chain rule states that if f : Rn → Rm is di�erentiable at x0 and

g : Rm → Rk is di�erentiable at f (x0), then

d(f ◦ h)x0 = dhf (x0) · dfx0 .

By the chain rule, given any curve γ such that γ(0) = x and γ′(0) = X we
have

dfx · X = ∂t |t=0f (γ(t)).

In other words, to compute ∂X f (x) we may replace the curve t 7→ x + tX
with any other curve such that γ(0) = x and γ′(0) = X .
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One Dimensional Inverse Function Theorem

Theorem

Let f : R→ R be a smooth function with f ′(x0) 6= 0, there exists an

interval I containing x0 and an interval J containing f (x0) so that

f : I → J is a di�eomorphism. That is, there exists an inverse function

f 1 : J → I . Moreover, for all y ∈ J,

(f −1)′(y) =
1

f ′(f −1(y))
.

To be explicit, the de�nition of f −1 means that f ◦ f −1(y) = y) for all
y ∈ J and f −1 ◦ f (x) = x for all x ∈ I .

In this case, observe that if h : J → R is a smooth function, then so
too is h ◦ f . This de�nes the pull-back

f ∗ : h ∈ C∞(J,R) 7→ h ◦ f ∈ C∞(I ,R).

Exercise: Show that f ∗ is a bijection with inverse (f −1)∗.
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Contraction mappings and �xed points

De�nition

A map T : B̄r (p)→ B̄r (p) is a contraction map if there exists a constant
0 ≤ L < 1 such that

|T (x)− T (y)| ≤ L |x − y | .

Theorem (Banach �xed point theorem)

Let T be a contraction map. Then there exists a unique �xed point

x∗ ∈ Br (p) of T . That is, there exists a unique point x∗ such that

T (x∗) = x∗.
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Proof of contraction mapping theorem (Uniqueness)

Proof.

Fundamental contraction identity:

|x − y | ≤ |x − T (x)|+ |T (x)− y |
≤ |x − T (x)|+ |T (x)− T (y)|+ |T (y)− y |
≤ |x − T (x)|+ L |x − y |+ |T (y)− y | .

Therefore

|x − y | ≤ |x − T (x)|+ |T (y)− y |
1− L

Thus we obtain uniqueness: if T (x) = x and T (y) = y , then |x − y | ≤ 0
and hence x = y .
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Proof of contraction mapping theorem (Existence)

Proof.

Pick any x0 and de�ne xn = T n(x0) = T ◦ · · · ◦ T︸ ︷︷ ︸
n times

(x0)

The claim is that x∗ = limn→∞ xn exists and is the desired �xed point.
Supposing �rst that the limit exists, then using xn = T (xn−1) we have

x∗ = lim
n→∞

xn = lim
n→∞

T (xn−1) = T ( lim
n→∞

xn−1) = T (x∗)

where we pass the limit through T since a contraction mapping is
continuous (for any ε choose δ = ε/L).
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Proof of contraction mapping theorem (Existence)

Proof.

To prove that xn = T n(x0) has a limit we prove it's a Cauchy sequence. By
the fundamental contraction identity

|T n(x0)− Tm(x0)| ≤ |T (T n(x0))− T n(x0)|+ |T (Tm(x0))− Tm(x0)|
1− L

=
|T n(T (x0))− T n(x0)|+ |Tm(T (x0)− Tm(x0)|

1− L

≤ Ln |T (x0)− x0|+ Lm |T (x0)− x0|
1− L

=
Ln + Lm

1− L
|T (x0)− x0| → 0 as n,m→∞.

Here we used that 0 ≤ L < 1 and by induction that (exercise!)

|T n(x)− T n(y)| ≤ Ln |x − y | .
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Inverse Function Theorem

Theorem

Let f : Rn → Rn a smooth function such that dfx0 is invertible at x0. Then

there is an open set U containing x0 and an open set V containing f (x0)
such that f |U : U → V is a di�eomorphism. Moreover

df −1f (x0)
= (dfx0)−1.

Remark

Notice that if f is a di�eomorphism, then f −1 ◦ f (x) = x . That is,
f −1 ◦ f = Idx . Since d Idx = Idn, by the chain rule we have

Idn = d Idx = d(f −1 ◦ f )x0 = df −1f (x0)
· dfx0 .

That is dfx0 is invertible and

(dfx0)−1 = df −1f (x0)
.
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Inverse Function Theorem: Idea

Proof.

Here's the basic idea: By de�nition, we have

f (x) = f (x0) + dfx0 · (x − x0) + o(|x − x0|).

Ignoring the error term for the moment, by assumption since dfx0 is
invertible, we can solve uniquely for x :

f (x) = f (x0) + dfx0 · (x − x0) ⇒ x = x0 + df −1x0 (f (x)− f (x0)).

Write y = f (x) and y0 = f (x0). Since y uniquely determines x we may
write x = f −1(y) and

f −1(y) = f −1(y0) + df −1x0 · (y − y0).

So we need to deal with the error terms.
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Inverse Function Theorem: Contraction

Proof.

We use the contraction mapping theorem: De�ne for each �xed y ,

Ty (x) = x − df −1x0 (f (x)− y).

Then since f is C 1, so too is T (dropping the y subscript for convenience)
and

dTx0 = d Idx0 −df −1x0 dfx0 = 0.

By continuity of dT , there exists an open neighbourhood U of x0 such that
‖dTx0‖ ≤ 1/2. That is, for x ∈ U and X ∈ Rn,

|dTx · X | ≤
1

2
|X | .
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Inverse Function Theorem: Contraction

Proof.

From |dTx · X | ≤ 1

2
|X |, and the mean value inequality, we obtain

|T (x1)− T (x2)| ≤ 1

2
|x1 − x2|

so that T is contractive for x1, x2 ∈ U.
In order to conclude that T has a unique �xed point, we need to verify that
there is an r > 0 such that T : B̄r (x0)→ B̄r (x0).
Since x0 ∈ U and U is open, there exists an r > 0 such that Br (x0) ⊆ U.
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Inverse function theorem: Contraction

Proof.

Now we restrict the range of possible y : Let y0 = f (x0) and y ∈ Bs(y0)
with s any number satisfying

0 < s <
1− L

‖df −1x0 ‖
r .

Then for x ∈ Br (x0), recalling T (x) = x − df −1x0 (f (x)− y) we have

|T (x)− x0| ≤ |T (x)− T (x0)|+ |T (x0)− x0|
≤ L |x − x0|+

∣∣−df −1x0 (f (x0)− y)
∣∣

≤ L |x − x0|+ ‖df −1x0 ‖ |y0 − y |
≤ rL + ‖df −1x0 ‖s
≤ rL + (1− L)r = r .
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Inverse function theorem: Fixed Point

Proof.

That is T (x) ∈ B̄x0(r) for x ∈ B̄x0(r) and y ∈ B̄s(y0).
Thus for any y ∈ B̄s(x0), Ty : B̄r (x0)→ B̄r (x0) is a contraction mapping,
hence:
For each such y , there exists a unique �xed point x∗y ∈ B̄r (x0). That is

x∗y = Ty (x∗y ) = x∗y − df −1x0 (f (x∗y )− y).

Cancelling x∗y from both sides and since df −1x0 is non-singular,

df −1x0 (f (x∗y )− y) = 0⇒ f (x∗y ) = y .
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Inverse function theorem: Continuity of Inverse

Proof.

We have �nally found our inverse function: f −1(y) = x∗y for y ∈ Bs(y0).
Note we need to restrict the range of x to the open set
f −1(Bs(y0)) ∩ Br (x0) so that f maps this set into Bs(y0).
Since T is a contraction∣∣x1 − x2 − df −1x0 (f (x1)− f (x2))

∣∣ = |T (x1)− T (x2)| ≤ L |x1 − x2| .

By the reverse triangle inequality

|x1 − x2| −
∣∣df −1x0 (f (x1)− f (x2))

∣∣ ≤ L |x1 − x2| .

That is,

|x1 − x2| ≤
∣∣df −1x0 (f (x1)− f (x2))

∣∣
1− L

≤
‖df −1x0 ‖
1− L

|f (x1)− f (x2)| .
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Inverse function theorem: Continuity of Inverse

Proof.

We have

|x1 − x2| ≤
‖df −1x0 ‖
1− L

|f (x1)− f (x2)| .

Letting yi = f (xi ) so that xi = f −1(yi ) gives continuity (even Lipschitz):

∣∣f −1(y1)− f −1(y2)
∣∣ ≤ ‖df −1x0 ‖

1− L
|y1 − y2| .

Lipschitz is almost di�erentiable but not quite (e.g. f (x) = |x |).
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Inverse function theorem: Di�erentiability

Proof.

Pick any arbitrary y ∈ Bs(y0) and any h such that y + h ∈ Bs(y0), say
h ∈ Bε(0) so that y + h ∈ Bε(y) ⊆ Bs(y0).
Let x = f −1(y) and de�ne

R = f −1(y + h)− f −1(y)− df −1x · h.

We need to show that

lim
h→0

|R|
|h|

= 0.
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Inverse function theorem: Di�erentiability

Proof.

Let k = f −1(y + h)− f −1(y) so that h = f (x + k)− f (x). Then

R = f −1(y + h)− f −1(y)− df −1x · h
= k − df −1x (f (x + k)− f (x))

= k − df −1x (dfxk + o(k))

= −df −1x (o(k)).
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Inverse function theorem: Di�erentiability

Proof.

Since f −1 is Lipschitz, with constant M say, we have

|k| =
∣∣f −1(y + h)− f −1(y)

∣∣ ≤ M |y + h − y | = M |h| .

Therefore,
|R|
|h|
≤ ‖df −1x ‖

o(k)

|h|
≤ M‖df −1x ‖

o(k)

|k |
.

The right hand side goes to zero as h→ 0 since |k| ≤ M |h| implies k → 0
and then by de�nition of o(k).
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Inverse function theorem: Higher regularity

Proof.

So to summarise we have shown the existence of a di�erentiable local
inverse f −1 to f with di�erential

d(f −1)y = (dfx)−1

where x = f −1(y).
Now, by Cramers's rule, given an invertible matrix A, the inverse is

A−1 =
1

detA
adjA

where the adjA is the adjugate matrix formed from cofactors of A - that is
the determinants of the minors of A.
As a function then, A 7→ A−1 we see that the components are rational
functions of the entries of A (since determinants are polynomials in the
entries of A).
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Inverse function theorem: Higher regularity

Proof.

Then the inverse function Inv is in fact a smooth function from the open
set of non-singular matrices (i.e. those with detA 6= 0) to itself.
Then since x 7→ dfx is smooth,

y 7→ df −1
f −1(y)

= Inv ◦df ◦ f −1(y)

is the composition of C 0 functions and hence df −1 is also C 0.
That is f −1 is C 1. Therefore in fact df −1 is the composition of C 1

functions hence is also C 1.
That is f −1 is C 2. Now we just iterate to get f −1 is C k for any k and
hence smooth.
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Implicit Function Theorem

In progress.
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Submersions and Immersions

In progress.
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