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Open and closed balls and spheres
Definition
Given r > 0 and x € R", the open ball of radius r and centre x is the set

B/(x)={yeR": |x—y|<r}.

The closed ball of radius r and centre x is the set

B(x)={y eR": |x—y| <r}.

The sphere of radius r and centre x is the set

Sr(x) ={y eR": [x —y[=r}.
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Distance function

Recall the distance |x — y| is defined to be

x =yl = Ot =y (e — )2

1

where x = (x!,...,x") and y = (y},...,y").

@ The open ball is the set of points of distance to x strictly less than r.

@ The closed ball is the set of points of distance to x less than or equal
to r.

@ The sphere is the set of points of distance to x equal to r.

It is sometimes said that analysis is simply applications of the triangle
inequality:
x =yl <|x—z|+ ]z -yl
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Open and closed sets

Definition
A set U C R” is said to be open provided for every x € U, there exists an
r = r(x) such that

B.(x) C U.

A set C is closed if it's complement,

R"\C:={yeR":y¢C}

is open.

@ By this definition, open balls are open, closed balls are closed and
spheres are closed.

e Given any point of an open set, we can always move /uniformly/ a
little in any direction and remain in the open set.
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Bounded and compact sets

Definition

A set S CR" is bounded if there exists an x € R™ and an r > 0 such that
S C B/(x).

A set K C R" is compact if it is closed and bounded.

@ Aset S C R"is bounded if and only if, for every x € R" there exists
an r = r(x) such that S C B,(x). This follows by the triangle
inequality.

@ A set K CRR"is compact if and only if for every open cover {U,},
there exists a finite subcover.

» An open cover is a collection of open sets {U,} such that K C U, U,.

> A finite subcover is a finite number of sets U,,,- - , Uy, from the
collection such that K C U, U,,.

» This equivalent condition of compactness is the general definition for
topological spaces but is equivalent in the case of R".
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Limits

Definition
A sequence (x,)neny € R” converges to x € R" if for every € > 0, there
exists a N € N such that (xp),>n C Be(x). We write lim,_,o0 x5 = x.

Definition
The sequence (x,) is Cauchy if for every € > 0, there exists a N € N such
that (xm)m>n C Be(x,) for every n > N.

Remark

The condition for convergence to x says that [x — x,| < € for n > N.
The condition to be a Cauchy sequence says that |x, — xm| < € for
m,n> N.
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Continuity
Here are some equivalent definitions of continuity.
Definition (Sequential definition)

A function f : R” — R™ is continuous at x € R" if for every sequence (xj)
with lim,_o = x we have lim,_, f(x,) = f(x).

Definition (e-9 definition)

Write
lim f(x)=y

X—rX0

provided for every € > 0, there exists a § > 0 such that f(Bs(xp)) C Be(y).
Then f is continuous at xp if limy_x, f(x) = f(xo).

Definition (Topological definition)

The function f is continuous (at every xp) if f1(V) is an open set for
every open set V C R™.
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Continuity

@ The first definition requires that f(x,) — f(x) for every sequence.

@ The condition in the second definition that f(Bjs(xp)) C Bc(y) is the
same thing as |f(x) — f(x0)| < € whenever |x — xg| < J.

@ The second definition says that given any tolerance ¢ > 0, there is an
adjustment § > 0 so that provided we are sufficiently close to xg (i.e.
|x — xo0| < 6), then f(x) is within the desired tolerance of f(xg) (i.e.
If(x) = f(x0)| < e

@ The equivalence of the first and second definitions is a standard
exercise in analysis using the completeness of the real numbers R.

@ The final definition is the general topological definition.

@ The equivalence of the topological and -6 definitions follows by
writing U = Uycy B,(,)(y) as a union of open balls and using
properties of the pull-back 1.
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A cautionary example

Let

_F5 () #(0,0)
fley) = {o,+ (x,y) = (0,0).

Then f is not continuous at (x,y) = (0,0).
However, along every straight line through the origin y = ax, the limit is in
fact 0! That is,

2 2
tc - at .t at
lim f(t,at) = lm ——— = lim 55— =0
t—0 t—0 t4 4+ a2t2 t—0 t2 12 + 32
But along the curve y = x?, we get something else:
2. 42 4
te -t t*1 1
lim f(t,t°) = lim ———5 = lim = = —.
t—0 ( ) t—0 t* + (t2)2 0 t42 2
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Partial derivatives

Definition

The i'th partial derivative of a function f : R” — R at x = (x!,...,x") is
of (X X X R XL X)) = f(x L xT)

9if(x) = W(X) =l h

whenever the limit exists.

The partial derivative is simply the usual derivative of a function of one
variable holding all other variables fixed.
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Directional derivatives

Definition

Let X = (X1,...,X") € R". The directional derivative df, - X of f at x in
the direction X is

Fx+hX) = F(x)

8Xf(X) :8t|t:0f(X—|— tX) :Il[)no h

v

The partial derivative is simply the directional derivative with X = ¢; where
e =(0,...,0,1,0,...,0) with the 1 in the i’th position is the so-called
i'th basis vector.
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The Differential

Recall that Taylor's theorem with remainder states that

f(x) = f(x0) + f'(x0)(x — x0) + Ry (X)

where
i |Ra(0)
X—=X0 X — Xp

We write Ry, (x) = o(x) as x — xo.

=0.

Definition
We say f : R"” — R™ is differentiable at xq if there exists a linear map
Ly, : R" — R™ such that

lim |f(X) — f(XO) - on : (X - X0)|

X—Xp ’X = X0|

=0.

That is, there exists a linear map written L,, = df, such that
f(x) = f(x0) + dfy, - (x —x0) + o(]x — x0]), as x — xo.
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Differentiable imples partial derivatives exist
Let f be differentiable at xp = (x3,...,x§). For h#£0, let
x=(x¢,... ,x(’)_l,xé + h,x(’)+1, ..., x§) = xo + hei. We have

8,'f(Xo) _ flllno f(Xo + he/;) — f(Xo)

provided the limit exists. Differentiability ensures that

f(xo + he;) — f(xo) B dfy, - he;

— i
0 hino h h
and hence
f hej) — f 1
jim L0 he) ZF00) L e e
h—0 h h—0 h
exists.

e Exercise: Show that the same argument proves Oxf(xp) = dfy,(X)
exists.
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A cautionary example

Let
Xy
fx,y) = {X2+y2’ bey) #(0,0)
0, (va):(070)
Notice that
t-0
0xf(0,0) = Dle=0f (£,0) = Dele=0 73 ——55 =

Likewise 0, f(0,0) = 0.

However,

D.1)F(0,0) = Beleof (t. 1) %(f(t, £) — £(0,0))

= |lim
t—0

is undefined since f(t,t) = t2/(t?> + t?) = 1/2.
Defining, f(0,0) = 1/2 doesn’t help because then 91 2)f(0,0) doesn’t
exist. In fact, f is not even continuous at (0, 0).

Paul Bryan MATH704 Differential Geometry 18 /41



C! functions
Definition

A function f : R" — R™ is C! (i.e. has continuous derivative) if f is
differentiable at each x and moreover, the map

X — dfy

is continuous. This is equivalent to having /continuous/ partial derivatives.

Note here that df, is a linear map R"” — R™ and the set of all these is
linearly isomorphic to the space M, ,, of n by m matrices, which is itself
linearly isomorphic to R™™ (index by i,j with 1 </ <nand1l<j<m).
Concretely we may realise df, as the matrix

(df); = 0ifi(x) since df, - e = 0;f(x) = (8;f%,...,0if").

Then df : R" — R™ is a map between Euclidean spaces so we can ask if
it's differentiable. Then f is C? if d?f is C! and more generally, f is Ckif

d*f is continuous.
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Chain Rule

Theorem (Chain Rule)

The chain rule states that if f : R" — R™ s differentiable at xq and
g : R™ — RX is differentiable at f(xg), then

d(f ] h)xo = dhf(Xo) : dfxo.

By the chain rule, given any curve 7 such that v(0) = x and 7/(0) = X we
have

dfi - X = Oele=of (7(t))-

In other words, to compute dxf(x) we may replace the curve t — x + tX
with any other curve such that v(0) = x and +/(0) = X.

Paul Bryan MATH704 Differential Geometry 20 /41



Lecture Four: Multivariable Calculus Refresher - Inverse and
Implicit Function Theorems

@ Lecture Four: Multivariable Calculus Refresher

@ Inverse and Implicit Function Theorems

Paul Bryan MATH704 Differential Geometry 21 /41



One Dimensional Inverse Function Theorem
Theorem

Let f : R — R be a smooth function with f'(xg) # 0, there exists an
interval | containing xo and an interval J containing f(xp) so that

f: | — Jis a diffeomorphism. That is, there exists an inverse function
fl:J — 1. Moreover, for all y € J,

N 1
(f 1)(Y):W-

e To be explicit, the definition of £~! means that f o f~1(y) = y) for all
y€Jand flof(x)=xforall x € I.

@ In this case, observe that if h: J — R is a smooth function, then so
too is ho f. This defines the pull-back

4

f*:he C°(J,R)— hof e C(I,R).

o Exercise: Show that f* is a bijection with inverse (f~1)*.
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Contraction mappings and fixed points

Definition
A map T : B.(p) — B.(p) is a contraction map if there exists a constant
0 < L <1 such that

IT(x) =TI < Llx—yl.

Theorem (Banach fixed point theorem)

Let T be a contraction map. Then there exists a unique fixed point
x* € By(p) of T. That is, there exists a unique point x* such that
T(x*) = x*.
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Proof of contraction mapping theorem (Uniqueness)

Proof.

Fundamental contraction identity:

Ix =yl < [x = T(x)|[+[T(x) -yl
<Ix =T +[TH) =T +IT(y) -yl
<Ix =T+ Lix=yl+[T(y) =yl

Therefore
X =T +1T(y) — vyl

— <
x—y| < -

Thus we obtain uniqueness: if T(x) =x and T(y) =y, then [x —y| <0
and hence x = y.
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Proof of contraction mapping theorem (Existence)

Proof.
Pick any xp and define x, = T"(xp) =T o--- 0o T(xp)

n times
The claim is that x* = lim,_sc X, exists and is the desired fixed point.

Supposing first that the limit exists, then using x, = T(xp—1) we have

X = i = i, Thnm1) = T ) = T6E)

where we pass the limit through T since a contraction mapping is
continuous (for any € choose 0 = €/L).
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Proof of contraction mapping theorem (Existence)
Proof.

To prove that x, = T"(xp) has a limit we prove it's a Cauchy sequence. By
the fundamental contraction identity

T7(x0) — T™(g)| < LL00)) = T"00)| + [ T(T™ (%)) = T"(%)|

1-1L

_T(T(x0)) = T"(x0)| + [ T™(T(x0) — T™(x0)
1—-L

< L" ‘T(Xo) — Xo‘ + LM ‘T(Xo) — Xo‘

L+ Lm
— 1+L |T(x0) —xo| >0 as n,m— oo.

1-1L

Here we used that 0 < L < 1 and by induction that (exercise!)

IT"(x) = T"WI < L7 [x —yl.
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Inverse Function Theorem

Theorem

Let f : R" — R" a smooth function such that dfy, is invertible at xo. Then
there is an open set U containing xo and an open set V containing f(xo)
such that f|U : U — V is a diffeomorphism. Moreover

dffy = (dfie)

Remark

Notice that if f is a diffeomorphism, then f~! o f(x) = x. That i,
f~1 o f =Idy. Since dld, = Id,, by the chain rule we have

Id, = dld, =d(ftof), = df(l) dfy,.

That is dfy, is invertible and

-1 _ -1
(dfi) ™t = df; L.
Y




Inverse Function Theorem: Idea
Proof.

Here's the basic idea: By definition, we have
f(x) = f(x0) + dfy, - (x = x0) + o(|x — xol)-

Ignoring the error term for the moment, by assumption since dfy, is
invertible, we can solve uniquely for x:

f(x)=f(x)+dhy - (x—x) = x=x+ dfxgl(f(x) — f(x0)).

Write y = f(x) and yo = f(x0). Since y uniquely determines x we may
write x = f~1(y) and

FHy) = (%) + dfg - (v — ).

So we need to deal with the error terms.
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Inverse Function Theorem: Contraction

Proof.

We use the contraction mapping theorem: Define for each fixed y,

Then since f is C!, so too is T (dropping the y subscript for convenience)
and

dT,, = dld,, —df_tdf,, = 0.

X0

By continuity of dT, there exists an open neighbourhood U of xg such that
|dTy || < 1/2. Thatis, for x € U and X € R",

1
dT,- X| < 5 1XI.
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Inverse Function Theorem: Contraction

Proof.

From |dT - X| < 1|X], and the mean value inequality, we obtain

1
IT(x) — T(e)| < 5 X1 — x|

so that T is contractive for x1, x> € U.

In order to conclude that T has a unique fixed point, we need to verify that
there is an r > 0 such that T : B,(x) — B,(xo).

Since xp € U and U is open, there exists an r > 0 such that B,(xg) C U.

V.
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Inverse function theorem: Contraction

Proof.
Now we restrict the range of possible y: Let yo = f(xp) and y € Bs(yo)
with s any number satisfying

1-1L
0<5<—_1r.
ldfio " |l

Then for x € B,(x), recalling T(x) = x — df,_1(f(x) — y) we have

X0

[ T(x) = x| < [T(x) = T(x0)| + [T (x0) — xo|
< Lx = xo| + [=dfig (f(x0) — )|
< Lx = xo| + lldfi I [yo — 1
<rl+ || df s
<rk+(1-L)yr=r.
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Inverse function theorem: Fixed Point

Proof.

That is T(x) € Bxg(r) for x € ?

Thus for any y € Bs(x0), Ty : B

hence: _

For each such y, there exists a unique fixed point Xy € B/(x0). That is

o () and_y € ES(YO)-
+(x0) — Br(xp) is a contraction mapping,

Cancelling x; from both sides and since dfxg1 is non-singular,

dfﬁl(f(x;,‘) —y)=0=f(x;) =y.
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Inverse function theorem: Continuity of Inverse

Proof.

We have finally found our inverse function: f=1(y) = x; for y € Bs(yo)-
Note we need to restrict the range of x to the open set

f~1(Bs(y0)) N By(x0) so that f maps this set into Bs(yp).

Since T is a contraction

}Xl — X — dfxgl(f(xl) — f(Xz))’ = |T(X1) — T(X2)| < L|X1 — X2 .

By the reverse triangle inequality

|X1 —X2| — ‘dfxgl(f(xl) — f(XQ))‘ < L|X1 — Xo|.

That is,

1 (x1) — f(x 1
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Inverse function theorem: Continuity of Inverse

Proof.

We have I 1H
df,
pa = x| < =7 () = Fe)].

Letting y; = f(x;) so that x; = f~%(y;) gives continuity (even Lipschitz):

1 1 ldfg |
|F0n)—f (Y2)\_1—|1—Y2|

Lipschitz is almost differentiable but not quite (e.g. f(x) = |x|).

Paul Bryan MATH704 Differential Geometry
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Inverse function theorem: Differentiability

Proof.

Pick any arbitrary y € Bs(yp) and any h such that y + h € Bs(yo), say
h € B:(0) so that y + h € Bc(y) C Bs(yo)-
Let x = f~!(y) and define

R=fYy+h —fy)—df ! h

X

We need to show that

. |R|
lim — =20
h—0 | h|
4
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Inverse function theorem: Differentiability

Proof.
Let k = f~1(y + h) — F~1(y) so that h = f(x + k) — f(x). Then

R=fYy+h —f1y) —df !t h
= k — df_ Y(f(x + k) — f(x))

X

= k — df,_ Y(dfck + o(k))

X

= —df " (o(k)).
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Inverse function theorem: Differentiability

Proof.

Since f~1 is Lipschitz, with constant M say, we have

Kl =Yy +h)— )| <Mly+h—y| =M.

Therefore, | ‘ ) o(k)
R o(k

< || < M||df?
S BT < MIdETH =

The right hand side goes to zero as h — 0 since |k| < M |h| implies k — 0
and then by definition of o(k).
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Inverse function theorem: Higher regularity

Proof.

So to summarise we have shown the existence of a differentiable local
inverse 1 to f with differential

where x = f~1(y).
Now, by Cramers’s rule, given an invertible matrix A, the inverse is

_ 1 :
A= detAadJA

where the adj A is the adjugate matrix formed from cofactors of A - that is
the determinants of the minors of A.

As a function then, A +— A~! we see that the components are rational
functions of the entries of A (since determinants are polynomials in the
entries of A).
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Inverse function theorem: Higher regularity

Proof.

Then the inverse function Inv is in fact a smooth function from the open
set of non-singular matrices (i.e. those with det A # 0) to itself.
Then since x — dfy is smooth,

y = df7y ) = Invodf o fH(y)

is the composition of C° functions and hence df ! is also C°.

That is f~1is CL. Therefore in fact df 1 is the composition of C!
functions hence is also C*.

That is 1 is C2. Now we just iterate to get f ! is CX for any k and
hence smooth. O

4
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Implicit Function Theorem

@ In progress.
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Submersions and Immersions

@ In progress.
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