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Scalar valued smooth functions

De�nition

A function f : Rn → R is smooth if all the partial derivatives,

∂i1···ik f := ∂x i1 · · · ∂x ik :=
∂k f

∂x i1 · · · ∂x ik

exist and are continuous.

Here k ∈ N and 1 ≤ i1, . . . , ik ≤ n are any choice of k indices between

1 and n.
For k = 0, there are no derivatives and in this case, the condition is

just that f is continuous.

The di�erential in the standard basis {ei}ni=1 is now

dfx =
(
∂1f · · · ∂nf

)
.

Now we have a function x ∈ Rn 7→ dfx ∈ Rn. To de�ne the second

derivative, we need to di�erentiate functions Rn → Rn.
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Vector valued smooth functions

De�nition

A function f : Rn → Rm is smooth if the component functions fi ,
1 ≤ i ≤ m are smooth where f (x) = (f 1(x), . . . , f m(x)) ∈ Rm.

Notice that for each i = 1, · · · , n, the di�erential, dfi is a 1× n
matrix. That is, the di�erential becomes an m × n matrix:

dfx =

∂1f
1 · · · ∂nf

1

...
. . .

...

∂1f
m · · · ∂nf

m

 .
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Higher derivatives

For f : Rn → R we now have

d2f = d(df ) =

∂11f · · · ∂1nf
...

. . .
...

∂n1f · · · ∂nnf


For f : Rn → Rm, write (dfx)ij = (∂i f

j)ij for the di�erential and

observe that di�erentiating again, gives for each component, ∂i f
j

∂k∂i f
j .

In other words, for each 1 ≤ j ≤ m, we get a matrix d2f j .

These are tensors. In general dk f is an order (k + 1) object, indexed

by indices 1 ≤ j ≤ m and 1 ≤ i1, · · · , ik ≤ n.
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The graph of a function

De�nition

Let f : U ⊆open R2 → R be a smooth function. The graph, Gr f is the set,

Gr f := {(u, v , f (u, v)) : (u, v) ∈ U} ⊆ R3.

The function F : U → R3 de�ned by

F (u, v) = (u, v , f (u, v))

is a parmetrisation of Gr f .
Notice that the function F is smooth and gives a one to one identi�cation

of the points (x , y , z) ∈ Gr f with the points (u, v) ∈ U an open set of R2

on which we can do calculus!
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Smooth functions on a graph

De�nition

A function ϕ : Gr f → R is smooth if the function

ϕ ◦ F (x , y) = ϕ(x , y , f (x , y))

is smooth. A function ϕ = (ϕ1, . . . , ϕm) : Gr f → Rm is smooth if each ϕi

is.

If Φ : R3 → R is smooth then, by the chain rule ϕ := Φ|Gr f is smooth since

ϕ ◦ F = Φ|Gr f ◦ F = Φ ◦ F

is the composition of smooth functions.
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Extension of smooth functions on a graph

Lemma

Let ϕ : Gr f → R be a smooth function. Then locally there exists a smooth

function Φ : R3 → R such that ϕ = ΦGr f .

Proof.

De�ne G (u, v ,w) = (u, v ,w + f (u, v)) for (u, v ,w) ∈ U × R.
Then G (u, v , 0) = F (u, v) parametrises Gr f .

The di�erential is nonsingular:

dG =

 1 0 0

0 1 0

∂uf ∂v f 1

 .

Hence by the inverse function theorem, there is a neighbourhood of W
of each (u0, v0, 0) and a neighbourhood V of

(x0, y0, z0) = (u0, v0, f (u0, v0)) such that G : W → V is
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Extension of smooth functions on a graph

Proof.

G = (u, v ,w + f (u, v)) is a local di�eomorphism around (u0, v0, 0).

Now de�ne the smooth function

Φ(x , y , z) = ϕ ◦ F̄ ◦ G−1.

where F̄ (u, v ,w) = F (u, v) = G (u, v , 0).

Note that Φ is de�ned on an open set of R3 and not just on Gr f .

Then for (x , y , z) = F (u, v) ∈ Gr f , we have G−1(x , y , z) = (u, v , 0)
and hence

Φ|Gr f (x , y , z) = ϕ ◦ F̄ (u, v , 0) = ϕ(u, v , f (u, v)) = ϕ(x , y , z).
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Tangent Vectors

If ϕ : Gr f → R is smooth we know what d(ϕ ◦ F ) is. But what is dϕ?

Indeed, as a linear map, what is the domain of dϕ?

De�nition

A tangent vector at x to Gr f is a vector X ∈ R3 such that there exists a

curve γ : (−ε, ε)→ Gr f ⊆ R3 with

γ(0) = x , γ′(0) = X .

The tangent plane, Tx Gr f to Gr f at x is the set of tangent vectors at x .

Tangent vectors are velocity vectors to curves along the graph.
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Tangent plane

Lemma

The tangent plane, Tx Gr f = dF(u,v)(R2) is a plane in R3 where

F (u, v) = x .

Proof.

Let (u, v) ∈ R2 be the unique point such that x = F (u, v).
We have

dF(u,v)(R2) = {c1dF · e1 + c2dF · e2 = dF (c1e1 + c2e2) : c1, c2 ∈ R}.

and

Tx Gr f = {γ′(0) : γ(0) = x}.
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Tangent plane: df (R2) ⊆ Tx Gr f .

Proof.

Since F : U → R3 with U open, given any c1, c2, there exists an ε > 0

such that

γ(t) = (u, v) + t(c1e1 + c2e2) ∈ U, t ∈ (−ε, ε).

Then F ◦ γ : (−ε, ε)→ Gr f satis�es F ◦ γ(0) = x and

X = (F ◦ γ)′(0) = dF(u,v) · γ′(0) = dF(u,v) · (c1e1 + c2e2) ∈ Tx Gr f .

Thus dF(u,v)(R2) ⊆ Tx Gr f .
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Tangent plane: Tx Gr f ⊆ df (R2).

Proof.

Let X = γ′(0).
De�ne

µ(t) = π ◦ G−1 ◦ γ(t)

where π : (u, v ,w) = (u, v) is orthogonal projection onto the (u, v) plane.

Recall that if γ(t) = (x(t), y(t), z(t)) ∈ Gr f , then

G−1(x(t), y(t), z(t)) = (u(t), v(t), 0).

with F (u(t), v(t)) = (x(t), y(t), z(t)).
Thus letting µ′(0) = c1e1 + c2e2 we have

dF(u,v)(c
1e1 + c2e2) = (F ◦ µ)′(0) = (F ◦ π ◦ G−1 ◦ γ)′(0) = γ′(0) = X .

Thus Tx Gr f ⊆ dF(u,v)(R2).
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Vector space structure on the tangent plane
We have two ways of realising the tangent plane as a vector space:

1 Tx Gr f is a set of vectors in R3. So they inherit a vector space

structure directly from R3!

In terms of curves, let Xi = γ′i (0) with γi (0) = x for i = 1, 2.
Note that if γi (t) = (xi (t), yi (t), zi (t)) then

γ′i (0) = (x ′i (0), y ′i (0), z ′i (0)). The vector space operations are then

c1X1 + c2X2 = µ′(0)

where

µ(t) = x + c1(γ1(t)− x) + c2(γ2(t)− x)

Then µ′(0) = c1γ′1(0) + c2γ′2(t) = c1X1 + c2X2.
2 R2 is already a vector space and dF is injective since

Fu = dF (e1) = ∂uF = e1 + ∂uf , Fv = dF (e2) = ∂vF = e2 + ∂v f

are linearly independent.Then c1X1 + c2X2 = dF (c1Y1 + c2Y2) where

dF (Yi ) = Xi with Yi uniquely determined.
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Vector space structure on the tangent plane

Exercise: Show that the map

A : c1e1 + c2e2 7→ ∂t |t=0F ((u, v) + t(c1e1 + c2e2))

induces a linear isomorphism between dF(u,v)(R2) and Tx Gr f .
Thus the two vector space structures are equivalent in the sense that they

are isomorphic.
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The di�erential
Now let ϕ : Gr f → R. Then we have two ways to de�ne

dϕ : Tx Gr f → R.

1

dϕ(c1Fu + c2Fv ) = d(ϕ ◦ F )(c1e1 + c2e2).

2

dϕ(c1X1 + c2X2) = ∂t |t=0Φ (x + (γ1(t)− x) + (γ2(t)− x)) .

where Φ is any extension of ϕ. Why do we need to this? Does the

result depend on the extension?

Exercise: Show that if X = A(Y ) from the isomorphism above, then

dϕY = dϕX where the �rst dϕ is from the �rst de�nition and the second

dϕ uses the second de�nition.
Paul Bryan MATH704 Di�erential Geometry 19 / 19


	Lecture Five: Surfaces that are graphs
	Smooth functions
	Graphs of functions
	The tangent plane to a graph


