MATH704 Differential Geometry

Macquarie University, Semester 2 2018

Paul Bryan

Paul Bryan MATH704 Differential Geometry



Lecture Five: Surfaces that are graphs

@ Lecture Five: Surfaces that are graphs
@ Smooth functions
@ Graphs of functions
@ The tangent plane to a graph

Paul Bryan MATH704 Differential Geometry 2/19



Lecture Five: Surfaces that are graphs - Smooth functions

@ Lecture Five: Surfaces that are graphs
@ Smooth functions

Paul Bryan MATH704 Differential Geometry



Scalar valued smooth functions
Definition
A function f : R” — R is smooth if all the partial derivatives,

Okf
ai1~-~/kf — 8X,-1 R 8X;k = m

exist and are continuous.

’

@ Here ke Nand 1 < i,...,i < nare any choice of k indices between
1 and n.

@ For k = 0, there are no derivatives and in this case, the condition is
just that f is continuous.

@ The differential in the standard basis {e;}7_; is now

dfy = (Ouf - Baf).

@ Now we have a function x € R" — df, € R". To define the second
derivative, we need to differentiate functions R" — R”".
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Vector valued smooth functions

Definition
A function f : R” — R™ is smooth if the component functions £,
1 < i < m are smooth where f(x) = (f}(x),...,f™(x)) € R™.
@ Notice that for each i = 1,--- , n, the differential, df; isa 1l x n

matrix. That is, the differential becomes an m x n matrix;

Onfl . Ot
df, = : :
O f™ oo Opfm
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Higher derivatives

e For f : R"” — R we now have

oif -+ Oinf
d*f=d(df)y=| + -
Omf -+ Onpnf

o For f : R" — R™, write (dfy); = (9;/);j for the differential and

observe that differentiating again, gives for each component, 9;f/

OO

@ In other words, for each 1 < j < m, we get a matrix d°f/.

o These are tensors. In general d*f is an order (k + 1) object, indexed
byindices 1 <j<mand 1<, - ,i <n.
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The graph of a function

Definition
Let f: U Copen R? — R be a smooth function. The graph, Gr f is the set,

Grf = {(u,v,f(u,v)): (u,v) € U} CR3.

The function F : U — R3 defined by
F(u,v) = (u,v,f(u,v))

is a parmetrisation of Grf.

Notice that the function F is smooth and gives a one to one identification
of the points (x,y,z) € Grf with the points (u, v) € U an open set of R?
on which we can do calculus!
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Smooth functions on a graph

Definition
A function ¢ : Grf — R is smooth if the function
poF(x,y) = wlxy,f(x,y))

is smooth. A function ¢ = (¢!,...,™) : Grf — R™ is smooth if each ¢
is.

y

If & : R3 — R is smooth then, by the chain rule ¢ := ®|g, f is smooth since
(pOF:q)‘GrfOF:(DOF

is the composition of smooth functions.
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Extension of smooth functions on a graph
Lemma

Let ¢ : Grf — R be a smooth function. Then locally there exists a smooth
function ® : R — R such that o = O, ¢.

v

Proof.

e Define G(u,v,w) = (u,v,w + f(u, v)) for (u,v,w) € U xR.
@ Then G(u,v,0) = F(u,v) parametrises Gr f.
@ The differential is nonsingular:

1 0 O
dG=| 0 1 0
ouf O,f 1

@ Hence by the inverse function theorem, there is a neighbourhood of W
of each (uo, vo,0) and a neighbourhood V of

(x0, Y0, 20) = (uo, vo, f(ug, vo)) such that G : W — V' is
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Extension of smooth functions on a graph

Proof.
o G=(u,v,w+ f(u,v)) is a local difftomorphism around (ug, v, 0).

o Now define the smooth function
¢(X,y,Z) =@o F_O G_l'

where F(u,v,w) = F(u,v) = G(u, v,0).
o Note that ® is defined on an open set of R® and not just on Grf.

e Then for (x,y,z) = F(u,v) € Grf, we have G }(x,y,z) = (u,v,0)
and hence

blare(x,y,2) = ¢ o F(u,v,0) = p(u, v, f(u,v)) = p(x,y, 2).
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Tangent Vectors

e If o : Grf — R is smooth we know what d(p o F) is. But what is dy?

@ Indeed, as a linear map, what is the domain of dy?

Definition
A tangent vector at x to Gr f is a vector X € R3 such that there exists a
curve v : (—e,€) — Grf C R3 with

v(0) =x, ~'(0)=X.

The tangent plane, T, Grf to Grf at x is the set of tangent vectors at x.

@ Tangent vectors are velocity vectors to curves along the graph.
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Tangent plane

Lemma
The tangent plane, T, Grf = dF(UN)(Rz) is a plane in R3 where
F(u,v) = x.

Proof.
Let (u,v) € R? be the unique point such that x = F(u, v).
We have

dF(y)(R?) = {c'dF - e1 + ?dF - & = dF (c'ey + c®ey) : ¢!, ? € R}

and

T Grf = {7/(0) : v(0) = x}.
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Tangent plane: df (R?) C T, Grf.

Proof.

Since F : U — R3 with U open, given any cl, c?, there exists an € > 0
such that

v(t) = (u,v) + t(cte + Pe) € U, te(—¢e).

Then F o~ :(—¢,€) — Grf satisfies F oy(0) = x and

X = (F o) (0) = dFy) -7 (0) = dFu) - (c'er + ®e2) € T, Grf.

Thus dF(u’v)(R2) - TX Grf.

Paul Bryan MATH704 Differential Geometry 15 /19



Paul Bryan MATH704 Differential Geometry

Tangent plane: T, Grf C df(IR?).

Proof.
Let X =~+/(0).
Define
p(t) =m0 G o)

where 7 : (u, v, w) = (u, v) is orthogonal projection onto the (u, v) plane.
Recall that if y(t) = (x(t), y(t),z(t)) € Grf, then

GH(x(t), (1), 2(1)) = (u(t), v(1),0).
with F(u(t), v(£)) = (x(), y(t), 2(2)).

Thus letting 11/(0) = cle; + c?e» we have

dF(uv)(cler + &) = (Fop)'(0) = (Fomo Gl oy)'(0) = /(0) = X.

Thus Ty Grf - dF(UN)(Rz).




Vector space structure on the tangent plane
We have two ways of realising the tangent plane as a vector space:
@ T,.Grfis a set of vectors in R3. So they inherit a vector space
structure directly from R3!
In terms of curves, let X; = ~v/(0) with ~;(0) = x for i = 1,2.
Note that if ~;(t) = (xi(t), yi(t), zi(t)) then
v:(0) = (x/(0),y/(0), z/(0)). The vector space operations are then
ct Xy + 2 X, = 4/(0)
where
() = x + A (t) — x) + ((t) - x)

Then 1/(0) = c171(0) + c®75(t) = 1 X1 + 2 X,.
Q@ R? is already a vector space and dF is injective since
F,=dF(e1) =0,F =e1 +0,f, F,=dF(e) =0,F =e+0,f
are linearly independent. Then c'X; + c?X, = dF(c1 Y, + ¢2 Y2) where
dF(Y;) = X; with Y; uniquely determined.
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Vector space structure on the tangent plane

Exercise: Show that the map
A:cle 4 ey = OtlimoF((u, v) + t(clel + c?e))

induces a linear isomorphism between dF(u,V)(R2) and T, Grf.
Thus the two vector space structures are equivalent in the sense that they
are isomorphic.
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The differential

Now let ¢ : Grf — R. Then we have two ways to define

dp: T,Grf —R.

do(ctFy + ?F,) = d(po F)(cle + ?e).

ng(C1X1 + C2X2) = Ot[t=0® (x + (71(t) — x) + (72(t) — x)) .

where ® is any extension of ¢. Why do we need to this? Does the
result depend on the extension?

Exercise: Show that if X = A(Y') from the isomorphism above, then
deY = dpX where the first dy is from the first definition and the second
di uses the second definition.
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