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Smooth Curves
Definition

A curve, v : (a,b) — S is smooth if for every local parametrisation,
¢:U—S, the curve

o toy iy e(U) = U

is smooth for all t € (a, b) such that v(t) € ¢(U).

It is sufficient that ¢! o v is smooth for any cover
{(Pa cUa — Vo C 5}0(6./4 of the image 7((37 b))

e If ¢ : U — S is any parametrisation such that v(t) € ¢(U), then
choose any « such that y(t) € V,.

@ The transition map 7 = ¢! 0 ¢, is smooth. Therefore
~1 ~1 ~1 ~1
o oy(t)=¢ Topaop, 0oy =To(py ©9)
is smooth.
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Coordinate Curves

Every curve p : (a,b) — U gives a smooth curve v = popu: (a,b) — S.
Just observe that

ploy=p lopou=p
is smooth.

For example, we have the smooth coordinate curves through (ug, v)):
Yu(t) = ¢(t, vo)
where t € (ug — €, up + €) for some € > 0 so that (t,vp) € U. Similarly,

() = ¢(uo, t)
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Smooth Curves

Lemma

A curve 7y : (a,b) — S is smooth if and only if it is smooth as a map
v : (a, b) — R3.

Proof.

The observation is that by the inverse function theorem, any local
parametrisation ¢ : U — S extends to a smooth diffeomorphism

®: W Copen U X R — Z Copen R?
with ®(u, v,0) = ¢(u, v).

Then go_l oy = o 1lo Y-
Exercise: Fill in the details! ]
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Smooth Maps

Definition
Let 51,5, be regular surfaces. A map f : 51 — S5 is smooth if

pofop lip[fZINV]CUCR? - W CR?
is smooth for every pair of local parametrisations

p:U—=VCS v W—=2zZcCS

Again, if f is smooth with respect to one pair of parametrisations, then it
is smooth with respect to all overlapping ones:

Ypofopyt =vpo(yhy orhr)ofo(prtopr)ops?
= (o) o (1o foprl)o(propyt)
:Tg)IO@blofogol_loﬁg.

is smooth provided 7 o f o gofl is smooth.
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Tangent Plane
Definition

Let x € S. The tangent plane T,S to S at x consists of all the vectors
X € R3, based at x and tangent to S.

Equivalent Descriptions
e Velocity vectors: T,S = {7'(0)|y: 1 — S,~v(0) = x}
@ Image of the differential: TS = {dpo(X)|p: U — S, ¢(0) = x}

The second definition is independent of the choice of parametrisation!
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The Differential

Definition
Let f : S — S’ be a smooth map. The differential, df, of f at x € S is the
linear map
dfy : TS — Tf(X)S'
7'(0) = (f 04)/(0).

Coordinate Description
Let F(u,v) =1"tofop(uv)=(Fi(u,v), Fa(u,v)) with x = f(ug, vo):

df, = (gu o0, to) %ﬁ V0=Uo))

V07 UO) av V07 UO)
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Metric (First Fundamental Form)
Definition

The metric g on S is an inner product g, at each point x € S defined for
tangent vectors V = ~/(0), W = 1/(0) € T,S C R3 by

g (V, W) = (7(0), 1'(0) s -

Equivalently

dp dp | Oy dp
g(V,W) <C1a +C282d81+d8X2

B dp Op dp Oy
C1d1<al Bx > d2<ag %

Op O
+ (c1ds + coch) <af a;’;>

= c1digi1 + cdagr + (c1d2 + c2di)gi2.
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Local Coordinate Expression

99 0o 9¢ Op

g = (gll g12> Ox1 7 Ox1 Ox1? Ox
B I W) 99 Op
g1 £2 Ox> 7 Ox1 Ox2? Oxo

@ This expression is only valid in a local coordinate parametrisation .

@ The local matrix (gj) is positive definite.
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Change of Local Coordinates

e Changing coordinates by ¢ — ¢ o 7 where 7 : R? — R? leads to the
change of coordinates for the metric

g =(9ys(porT),d gpo7‘>—<zaxcpaa7 Zaxjcpab7->
:Zg,-j(‘)yar abeJ
7

where 7 = (71(y1, y2), 72(y%, ¥?)) and @ = p(x, x?).
@ More concisely,
g¥T(X,Y)=(d(po7) X,d(poT)-Y)

= (dp(dT - X),dp(dT - y))
g?(dr - X,dr-Y).
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More on Coordinate Changes

Let o : U — Sand ¢ : V — S be local parametrisations and 7 = ¢! 0 9}
the transition map.

Let X be a tangent vector to S so that X = +/(0) for some curve

v :(—€¢€) = S CRS.

Define the corresponding (smooth!) curves in the coordinate space:

Yo =9 loy, qp=1lon.

Then we may write uniquely,

7,(0) = Xgeu + Xgeu,  7,(0) = Xjer + Xjes.
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More on Coordinate Changes
Notice that we have

-1

poy,=wo(p "oy)=r, Yoy =1.

Then recalling X = +/(0), X{e, + XY e, = 7,,(0):

dp (Xgeu + XYey) = Otli=0p(14(t)) = 7'(0) = X = dy) (Xfes + Xye,) .

Then since 7 = 1! 0 ¢, we have ¢ = 1) o 7 and hence
dip (Xjes + Xje) = X = dp (XJe, + XJe,) = dy - d7 (XJeu + XJe,) .
But dv is injective hence we see how tangent vectors transform under
change of coordinates (compare g¥°7 (X, Y) = g#(d7 - X, d1 - Y)):

Xfp’eu + Xz‘b/ev =dr (X;’eu + X;fev) .
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Length and Angle of Tangent Vectors

Definition
Let X be a tangent vector. Then it's length is defined to be

IXlg == V&(X, X).

Definition

The angle, 6 between two tangent vectors X, Y (at the same point
x € S!) is defined by

g(X,Y) (X Y)
osf = =gl —,— .
IX[Y] X[ Y|
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Cauchy Schwartz Inequality

Lemma
(X, V)| < IX]|Y]. J

See https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_
inequality#First_proof
Rearranging Cauchy-Schwarz inequality for X, Y # 0 gives

g(X,Y)

ey € L1
IXIY]

and 6 is well defined after choosing an inverse arccos.
The simplest is to take 6 € [0, 7].
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Arc Length

Definition
Let v : (a,b) — S be a smooth curve. The arc-length of v is

b
1) = [ (o) e

As for plane and space curves, define the arc length parameter

S(t) = /\V(T\df

so that s'(t) = |y/(t)| is smoothly invertible for regular curves (i.e. with

7/ (t) #0).

Then we may parametrisse v by arclength:

e /N —
satisfying |7/| = 1.
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Area

Let
Xy =dyp(es) = dup, X, =dp(e,)=0,p

be coordinate vectors.

Since dy is injective, X,, X, form a basis for T, M.

In fact X, X, determines a parallelogram X, A X, C T, M.

Taking a small rectangle R = {(u, v) € (uo, up + Au) x (vo, vo + Av)}, we
approximate the area of ¢(R) C S by

Area(p(S)) ~ Area(X, A X,) = | Xy x X, |Area(R) = | Xy, x X, | AuAv.

Note that [X, x X,|*> = det \T X = det g where A = (X, X,)!
Area is the limit of a Riemann sum: for any region Q = (W) C ¢(U)

Area(Q2) = /W v/ det g(u, v)dudv.
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Intrinsic Geometry

o Notice that thinking of v : (a, b) — R3 we have

g(+'(0),7'(0)) = (+/(0),7'(0))gs

so that the length of tangent vectors and hence the length of curves
is precisely the lengths obtained in R3.

@ Similar for angles and for area in terms of X, X, .
@ The point is that, if we know g, we may do geometry on S without
any reference to how it sits in R3! This is intrinsic geometry.

e But what exactly is the definition of g if we don't refer to R3?
At this point, the best we can do is say that g is determined by a collection
of smooth, matrix valued maps (u,v) € U — (gjj(u, v)) in each local
parametrisation that are symmetric and positive definite at each point
(u, v). We also require that under a change of coordinates, 7 we have

@poT @ i j
gy = E 8;; OyaT 8yb7'.
7
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