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Length and Angle of Tangent Vectors

Definition
Let X be a tangent vector. Then it's length is defined to be

IXlg == V&(X, X).

Definition

The angle, 6 between two tangent vectors X, Y (at the same point
x € S!) is defined by

g(X,Y) (X Y)
osf = =gl —,— .
IX[Y] X[ Y|
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Cauchy Schwartz Inequality

Lemma
(X, V)| < IX]|Y]. J

See https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_
inequality#First_proof
Rearranging Cauchy-Schwarz inequality for X, Y # 0 gives

g(X,Y)

ey € L1
IXIY]

and 6 is well defined after choosing an inverse arccos.
The simplest is to take 6 € [0, 7].
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Arc Length

Definition
Let v : (a,b) — S be a smooth curve. The arc-length of v is

b
1) = [ (o) e

As for plane and space curves, define the arc length parameter

S(t) = /\V(T\df

so that s'(t) = |y/(t)| is smoothly invertible for regular curves (i.e. with

7/ (t) #0).

Then we may parametrisse v by arclength:

e /N —
satisfying |7/| = 1.
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Area

Let
Xy =dyp(es) = dup, X, =dp(e,)=0,p

be coordinate vectors.

Since dy is injective, X,, X, form a basis for T, M.

In fact X, X, determines a parallelogram X, A X, C T, M.

Taking a small rectangle R = {(u, v) € (uo, up + Au) x (vo, vo + Av)}, we
approximate the area of ¢(R) C S by

Area(p(S)) ~ Area(X, A X,) = | Xy x X, |Area(R) = | Xy, x X, | AuAv.

Note that [X, x X,|*> = det \T X = det g where A = (X, X,)!
Area is the limit of a Riemann sum: for any region Q = (W) C ¢(U)

Area(Q2) = /W v/ det g(u, v)dudv.
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Intrinsic Geometry

o Notice that thinking of v : (a, b) — R3 we have

g(+'(0),7'(0)) = (+/(0),7'(0))gs

so that the length of tangent vectors and hence the length of curves
is precisely the lengths obtained in R3.

@ Similar for angles and for area in terms of X, X, .
@ The point is that, if we know g, we may do geometry on S without
any reference to how it sits in R3! This is intrinsic geometry.

e But what exactly is the definition of g if we don't refer to R3?
At this point, the best we can do is say that g is determined by a collection
of smooth, matrix valued maps (u,v) € U — (gjj(u, v)) in each local
parametrisation that are symmetric and positive definite at each point
(u, v). We also require that under a change of coordinates, 7 we have

@poT @ i j
gy = E 8;; OyaT 8yb7'.
7
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Orientation of Euclidean Space

Definition
An orientation on R"” is an equivalence class of ordered bases
E = (e1,---,en) where & ~ F if the change of basis matrix Agx has

positive determinant.

Since det (AcrArg) = det (Agr) det (Axrg), we do indeed have an
equivalence relation, and there are precisely two equivalence classes.

Example

Compute the change of basis from £ = (e1, &) to
(91,61+62), (elv_e2)7 (ezael)'

Example

Right hand orientation: (e1, e, €3), (€1, €3, —€2), ...
Left hand orientation: (e, e1, €3), (€1, —€2, €3), . ..
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Orientation preserving and reversing linear maps

Choose an orientation O = {ey, - -

Definition

An invertible linear map T : R” — R" is orientation preserving if

T(0O)= 0. That is, if

det (T(e1), -, T(en)) = det (e, - -

or equivalently if det T > 0.

- ,ep} on R

) en)

Example

01

. (1 0 (11
Preserving: T—( ), T—<1 0),

Reversing: T = (é

_1), T=(‘1’ (1))
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Orientation of the tangent plane

Tangent Plane Orientations

Local parametrisation: ¢ : U — S.

¢ 9y ¢ 9y
Ou’ dv )’ Ov’ du

Definition

The orientation induced by ¢ is compatible with the orientation induced
by ® if det d(¢) o ¢~1) > 0. A regular surface, S is orientable if there is a
cover @, : Uy — S such that det(7,5) > 0 for all «, 3.
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Examples

The sphere is orientable
The Maobius strip is not orientable

Graphs, are orientable

Inverse images of regular point are orientable: here F : R3 — R,
S = F~1(0) where dF, has maximal rank (i.e. rank 1) for all p € R3
such that F(p) = 0.
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Orientation of surfaces

Theorem

A surface S is orientable if and only if there is a differentiable field, N of
unit normal vectors. That is, if and only there exists a differentiable map
N : S — R3 such that [N(x)| = 1 for all x € S and such that N(x) L X
for all X € T,S.

Remember there are precisely two orientations!
There are two possible unit normal fields, N and —N. Choosing an
orientation is equivalent to choosing a normal field.

@ The proof of the theorem follows from the following lemma:

Lemma

Let o(u,v): UCR? = S and ¢(s,t) : V CR? = S be local
parametrisations. Then

Aup x Byp = [det d(yp ™" o )] Dstp x Oy
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Gauss Map

Definition
An orientable surface S along with a choice of orientation is called an
oriented surface.

Definition

Let S be an oriented surface. The Gauss Map is the unit normal map

x€S N(x)eS?={XeR3: ||X| =1}

With respect to a local parametrisation

_ Oup X Oy
|au(P X av‘P|.
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Examples

Sphere:
S={C+y*+22=1}, N(p)=p )
Graph:
1
5:{(X7y7 f(X’y))}a N(vaa f(X)): (_f;(’_f:‘”l)
1+ 24 f2
Inverse image of regular point
_ VF(p)
S={F Yo}, Np)= ==
(F) Mp)= ooy |
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Weingarten Shape Operator

Definition
The Weingarten or Shape Operator at p € S is the linear map

W =—dN,: T,S — T,S.

Note that N : S — S2 so that dN,, : T,S — TN(p)SQ. By definition
N(p) L TpS
But on the sphere, Ng2(z) = z and hence (with z = N(p))
N(p) L Typ)S>.

Therefore, TN(p)S2 is a plane parallel to 7,5 so we may identify these
planes to obtain dNj, : TpS — Ty S? ~ T,S.
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Examples

Plane
S={ax+ by + cz =0}

N(p) = (37 b, C)
dN, =0

Sphere
S=S*={x*+y’+22=1}
N(p) =p
dN, = 1d .
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Examples

Cylinder
C={x>+y’=1,-1<z<1}

N(p) = ﬂ-(x,y)(p) : N(X?y?z) = (Xaya 0)
dNp = 7y

Tangent vectors at p = (cos6,sin 6, zp):

X = (—sinf,cos6,0), Y =(0,0,1)

d

dNpX = —|  N(cos(f + t),sin(0 + t),z) = X
dt|,_o
d .

dNp,Y = — N(cosf,sinf,z+t)=0.
dt|,_o
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Interpretation of VW

Curvature of a plane curve
k= (0sT,N)=—(T,0:N) = —dN(T).

Measures the change of T, or equivalently, N along the curve.

Curvature of a surface
@ For surfaces T,S is two-dimensional.

@ W(V) = —dN(V) measures change of N in the direction V:
Let v be a curve with v(0) = p, and V =~/(0). Then

dNp (V) = 0¢|t=0N(y(t)) = deviation of N along the curve 7.

@ Thus dN is measures how the surface is curved in two-dimensions.
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