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Geodesic and normal Curvature
Let γ : I → S be a curve on S, p = γ(0), V = γ′(0) ∈ TpS.
Note: The normal (in R3) nR3 to γ may be tangent to S, or may be
normal to S, or some linear combination thereof.
As a curve in R3, γ may have curvature, κR3 6= 0 simply because S
has curvature!

Definition
The normal curvature of γ is the part of the curvature normal to S:

κN = 〈κnR3 ,N〉 .

The geodesic curvature vector, −→κ S (along S) is the projection of the
curvature vector −→κ R3 = κR3nR3 onto the tangent plane:

−→κ S = πTpS(κR3nR3) = κR3nR3 − 〈κR3nR3 ,N〉N.

Let nS ∈ TpS be such that nS ⊥ γ′(0) and (γ′(0), nS) has positive
orientation. The geodesic curvature is κS = 〈−→κ S , nS〉 (has a sign!).
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Example

Cylinder: C = {x2 + y2 = 1,−1 < z < 1}, N(x , y , z) = (x , y , 0).

γ(t) = (cos t, sin t, z0)

γ′(t) = (− sin t, cos t, 0)
γ′′(t) = (− cos t,− sin, 0)

N(γ(t)) = (cos t, sin t, 0)
nS(γ(t)) = (0, 0, 1)

κR3 = κN = 1, κS = 0.

Check the orientation!

(γ′, nS ,N)
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Example

Cylinder: C = {x2 + y2 = 1,−1 < z < 1}, N(x , y , z) = (x , y , 0).

γ(t) = (1, 0, t)
γ′(t) = (0, 0, 1)
γ′′(t) = (0, 0, 0)

N(γ(t)) = (1, 0, 0)
nS(γ(t)) = (0,−1, 0)

κR3 = κN = κS = 0.
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Example

Cylinder: C = {x2 + y2 = 1,−1 < z < 1}, N(x , y , z) = (x , y , 0).

γ(t) = (cos t, sin t, t)
γ′(t) = (− sin t, cos t, 1)
γ′′(t) = (− cos t,− sin, 0)

N(γ(t)) = (cos t, sin t, 0)

nS(γ(t)) =
1√
2
(sin t,− cos t, 1)

κR3 = κN = 1, κS = 0.
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Example

Cylinder: C = {x2 + y2 = 1,−1 < z < 1}, N(x , y , z) = (x , y , 0).

γ(t) = (cos(cos t), sin(cos t), sin t)
γ′(t) = (sin(sin t) cos t,− cos(cos t) sin t, cos t)
γ′′(t) = (− cos(cos t) sin2 t,− sin(cos t) sin2 t,− sin t)

N(γ(t)) = (cos(cos t), sin(cos t), 0)
nS(γ(t)) =?

κR3 = κN =?, κS = 1.

How do I know κS = 1?
You have to wait to find out!
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Example

κR3 =
1(

|cos (cos (t)) sin (t)|2 + |sin (t) sin (cos (t))|2 + |cos (t)|2
) 3

2
×

√ ∣∣∣−(
cos (cos (t)) sin (t)2 − cos (t) sin (cos (t))

)
cos (cos (t)) sin (t)

−
(
sin (t)2 sin (cos (t)) + cos (t) cos (cos (t))

)
sin (t) sin (cos (t))

∣∣∣2
+
∣∣∣cos (cos (t)) sin (t)2

+
(
sin (t)2 sin (cos (t)) + cos (t) cos (cos (t))

)
cos (t)

∣∣∣2
+
∣∣∣sin (t)2 sin (cos (t))

−
(
cos (cos (t)) sin (t)2 − cos (t) sin (cos (t))

)
cos (t)

∣∣∣2
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Dependence of normal curvature on direction

Theorem
Let γ, σ : I → S with γ(t0) = σ(t0) and γ′(t0) = σ′(t0) for some t0 ∈ I.
Then

κN(γ)(t0) = κN(σ)(t0).

That is, the normal curvature κN depends only the tangent vector
V = γ′(t0) = σ′(t0) at the point p = γ(t0) = σ(t0).

Note: Both κR3 and κS also depend on γ′′(t0) (resp. σ′′(t0)) and so will in
general differ for γ and σ if γ′′(t0) 6= σ′′(t0).
Thus κN measures the curvature of S itself in the direction V
independently of the choice of curve γ, σ.
Whereas κS measures the "left-over" curvature of γ after removing the
curvature of S itself.
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Proof of Theorem

We will show that
κN = −

〈
dN(γ′), γ′

〉
.

Let γ be parametrised by arc-length, s. Then

κR3nR3 = γ′′.

Therefore,
κN = 〈κR3nR3 ,N〉 =

〈
γ′′,N

〉
.

On the other hand, since 〈γ′,N〉 = 0 we have

0 = ∂s
〈
γ′,N

〉
=

〈
γ′′,N

〉
+

〈
γ′, dN(γ′)

〉
.

Hence,
κN =

〈
γ′′,N

〉
= −

〈
γ′, dN(γ′)

〉
.
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The Second Fundamental Form
Definition
The second fundamental form, or extrinsic curvature of S is defined to be

A(X ,Y ) = g(W(X ),Y ) = 〈W(X ),Y 〉 = 〈−dN(X ),Y 〉

for X ,Y tangent vectors to S.

Classically, the second fundamental form is the quadratic form:

II(X) = A(X,X).

The theorem shows that for any curve γ on S parametrised by arc length,

κN =
〈
−dN(γ′), γ′

〉
= A(γ′, γ′) = II(γ′).

More generally

κN =
II(γ′)
|γ′|2

=
A(γ′, γ′)
g(γ′, γ′) = A

(
γ′

|γ′|
,
γ′

|γ′|

)
.
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Spheres
Radius 1: S2 = {x2 + y 2 + z2 = 1}
Choose N(p) = −p (inward pointing). Then dNp(X ) = −X and

A(X ,Y ) = 〈−dN(X ),Y 〉 = 〈X ,Y 〉 = g(X ,Y )

Radius r : S2(r) = {x2 + y 2 + z2 = r 2}
Choose N(p) = −1

r p Then dNp(X ) = −1
r X and

A(X ,Y ) = 〈−dN(X ),Y 〉 = 1
r 〈X ,Y 〉 = 1

r g(X ,Y )

Equators (Great Circles)
γ(θ) = (r cos(θ), r sin(θ), 0): κR3 = κN = 1

r .
A(γ′, γ′) = 1

r g(γ′, γ′) = 1
r r2 = r 6= κN ?????

A(γ′, γ′) = |γ′|2κN - not arc-length!
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Symmetry

Theorem
The second fundamental form is symmetric: A(X ,Y ) = A(Y ,X ).
Equivalently, the Weingarten shape operator is self-adjoint with respect to
g: g(W(X ),Y ) = g(X ,W(Y )).

Proof.
Recall A(X ,Y ) = −〈dN(X ),Y 〉.
Let γ(s) ∈ S be a curve with γ′(0) = X .
Then since 〈N(γ(s)),Y (γ(s))〉 = 0 we have,

0 = ∂s 〈N(γ(s)),Y (γ(s))〉
=

〈
dN(γ′),Y

〉
+
〈
N, dY (γ′)

〉
= 〈dN(X ),Y 〉+ 〈N, dY (X )〉 .

Likewise 0 = 〈dN(Y ),X 〉+ 〈N, dX (Y )〉.
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Symmetry (proof continued)

Proof.
Thus A(X ,Y ) = −〈dN(X ),Y 〉 = 〈N, dY (X )〉 and
A(Y ,X ) = 〈N, dX (Y )〉.
The required result is equivalent to the statement that dX (Y )− dY (X ) is
tangential, since then

A(X ,Y )− A(Y ,X ) = 〈N, dY (X )− dX (Y )〉 = 0.

Let’s take the case, X = ∂uϕ, Y = ∂vϕ in a local parametrisation ϕ:
In this case,

〈N, dX (Y )〉 = 〈N, ∂v∂uϕ〉 = 〈N, ∂u∂vϕ〉 = 〈N, dY (X )〉 .

The general result follows by bi-linearity of A and that {∂uϕ, ∂vϕ} is a
basis so any X ,Y are linear combinations of them. exercise!
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Principal curvatures and Principal Directions

Definition
The principal curvatures κ1, κ2 are the eigenvalues of the Weingarten
shape operator. The eigenvectors, e1, e2 are called principal directions.

Note that the principal curvatures (and directions) vary from point to
point, since dN varies from point to point.
From above, we know that dN is self-adjoint.
From the appendix below we know that dN (being self adjoint) has
an orthonormal basis e1, e2 of eigenvectors with eigenvalues κ1, κ2.
With respect to e1, e2,

dN =

(
κ1 0
0 κ2

)
.

Paul Bryan MATH704 Differential Geometry 18 / 42



Examples
Example
The sphere S2(r) = {x2 + y2 + z2 = r2}.

dN = −1
r Id: κ1 = κ2 = 1

r .
All directions are principal directions!

Example
The cylinder C2(r) = {x2 + y2 = r2}.

dN = −1
r π{z=0}

In the local parametrisation (r cos θ, r sin θ, z):

dN =

(
0 0
0 1

r

)
.

κ1(r , θ) = 0, e1(r , θ) = (0, 0, 1).
κ2(r , θ) = 1

r , e2(r , θ) = (− sin θ, cos θ, 0)
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Mean Curvature and Gauss Curvature

Definition
The Mean Curvature is

H := Tr(W) = Tr(−dN) =
1
2 (κ1 + κ2) .

The Gauss Curvature is

K := det(W) = det(−dN) = κ1κ2.

Examples
Plane R2

H = 0
K = 0.

Sphere S2

H = 1
r

K = 1
r2 .

Cylinder C2(r)

H = 1
2r

K = 0.
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Umbilic Points

Theorem
A point p ∈ S is called umbilic if κ1 = κ2. If every point of a connected
regular surface S is umbilic, then S is entirely contained in a plane, or a
sphere.

At an umbilic point p,
dNp = κ(p) Id

where κ1(p) = κ2(p) = κ(p).
Therefore, umbilic points are points where the surface curves the
same way in all directions.
The basic idea is to show that κ(p) ≡ constant.
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Proof of Umbilic Point Theorem: κ ≡ constant.
With respect to a local parametrisation with ϕu = ∂uϕ,ϕv = ∂vϕ:

dN(ϕu) = ∂uN, dN(ϕv ) = ∂v N.

Thus dN = κ Id gives,
∂uN = κϕu, ∂v N = κϕv .

What’s next? Differentiate!
∂v∂uN = κvϕu + κ∂v∂uϕ

and
∂u∂v N = κuϕv + κ∂u∂vϕ

Subtracting and use Claireaut’s Theorem for mixed partial derivatives:
κvϕu = κuϕv ⇒ κv = κu = 0 ⇒ κ ≡ constant

since ϕu, ϕv are linearly independent.
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Proof of Umbilic Point Theorem: Locally S ⊆ R2

If we have
dN ≡ 0.

Therefore

∂u 〈ϕ,N〉 =
prod rule

〈ϕu,N〉+ 〈ϕ, dN(ϕu)〉 =
dN≡0

〈ϕu,N〉 =
ϕu tang

0

Likewise
∂v 〈ϕ,N〉 = 0.

Therefore 〈ϕ,N〉 = constant and the points ϕ(u, v) lie in a plane.
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Proof of Umbilic Point Theorem: Locally S ⊆ S2.
If we have

dN = κ Id, κ 6= 0

Therefore

∂u
(
ϕ− 1

κN
)

=
κ≡const

ϕu − 1
κ

dN(ϕu) =
dN=κ Id

ϕu − 1
κ
κϕu = 0.

Likewise
∂v

(
ϕ− 1

κN
)
= 0.

Therefore
ϕ− 1

κ
N = y0 ∈ R3 is constant.

and hence

|ϕ(u, v)− y0| =
1
|κ|

⇒ ϕ(u, v) ∈ S2(
1
|κ|

, y0).

Paul Bryan MATH704 Differential Geometry 24 / 42



Proof of Umbilic Theorem: Global
The local theorem establishes, for each local parametrisation ϕ:

κϕ ≡ constant{
Nϕ ≡ const, 〈ϕ,Nϕ〉 ≡ Cϕ, κϕ = 0 ⇒ Sϕ ⊆ R2(Nϕ,Cϕ)

ϕ− 1
κϕ

≡ yϕ, κϕ 6= 0 ⇒ Sϕ ⊆ S2( 1
|κϕ| , yϕ)

In any overlap of charts, Uα ∩ Uβ all the constants must agree.
S connected, means for any two points p, q ∈ S there is a continuous
path γ : [0, 1] → S such that γ(0) = p, γ(1) = q.
Cover the image γ([0, 1]) by local parametrisations ϕα(Uα) which
gives a cover of [0, 1]:

ϕ−1
α (Uα)

[0, 1] is compact so there is a finite cover {ϕi}n
i=1. with p ∈ ϕ1(U1),

q ∈ ϕn(Un), Ui ∩ Ui+1 6= ∅
Thus κ(p) = κϕ1 = κϕ2 = · · · = κϕn = κ(q). Similar for the other
constants so the plane (or sphere) is globally defined.
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Symmetric Bilinear Forms
Definition
Let V be a real, finite dimensional vector space.
e.g. R,R2,R3, · · · ,Rn, . . .
A bilinear form B on V is a map

B : V × V → R

such that for all c1, c2 ∈ R and X1,X2,Y ∈ V :

B(c1X1 + c2X2,Y ) = c1B(X1,Y ) + c2B(X2,Y )

and
B(Y , c1X1 + c2X2) = c1B(Y ,X1) + c2B(Y ,X2)

B is symmetric if for every X ,Y ∈ V :

B(X ,Y ) = B(Y ,X ).
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Inner Products

Definition
An inner-product g is a positive-definite bilinear form. That is, g is a
bilinear form such that for all X ∈ V ,

g(X ,X ) ≥ 0, g(X ,X ) = 0 ⇒ X = 0.

Example
Let V = R2, X = (x1, x2), and Y = (y1, y2). Define the standard inner
product:

g(X ,Y ) = 〈X ,Y 〉 := x1y1 + x2y2.

Paul Bryan MATH704 Differential Geometry 28 / 42



Inner Products
Example
Let A be any positive-definite, symmetric matrix. Define

g(X ,Y ) := XT AY = 〈X ,AY 〉 .

For example, let

A =

(
2 1
1 3

)
.

Then
g(X ,Y ) = 2x1y1 + x1y2 + x2y1 + 3x2y2.

Note

g(X ,X ) = 2x2
1 + 2x1x2 + 3x2

2 = (x1 + x2)
2 + x2

1 + 2x2
2 ≥ 0

with equality if and only if X = (0, 0).
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Canonical Isomorphism
Lemma
Let g be an inner-product on V . Then g induces a linear isomorphism
between the vector space Hom(V ) of linear transformations V → V and
the vector space B2(V ) of bilinear forms on V .

The vector space structure on Hom(V ) is given by letting for each X ∈ V ,

(c1T1 + c2T2)(X ) := c1T1(X ) + c2T2(X ).

That is, given real constants c1, c2 ∈ R and linear transformations
T1,T2 : V → V , we define the linear transformation c1T1 + c2T2 by
specifying it’s value for each X ∈ V .
On the right hand side, note that T1(X ) ∈ V so c1(T1(X )) is scalar
multiplication using the vector space structure on V . Likewise for
c2(T2(X )). The sum (c1T1(X )) + (c2T2(X )) is vector addition in V .
The vector space structure on linear maps V → V is defined pointwise.
Exercise: Figure out the vector space structure on bilinear forms. Hint: It’s
also defined pointwise.
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Canonical Isomorphism
Proof.
Choose any basis {e1, . . . , en} for V , and write for X ∈ V :

X = X 1e1 + · · ·+ Xnen.

A basis for Hom(V ) is given by the linear transformations

T i
j (X 1e1 + · · ·Xnen) = X iej .

A basis for B2(V ) is given by the bilinear forms

B ij(X 1e1 + · · ·Xnen,Y 1e1 + · · ·+ Y nen) = X iY j .

Thus,
dimHom(V ) = dimB2(V ) = n2.

Thus they are isomorphic, being vector spaces of the same dimension, but
something else is needed to get a canonical isomorphism. . .
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Canonical Isomorphism
Example
Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the
standard basis for Rn.
The isomorphism induced by the standard inner-product defined on basis
elements by T i

j 7→ B ij and then extended by linearity.

Proof.
In general, given T ∈ Hom(V ) define

[Bg(T )](X ,Y ) = g(T (X ),Y ).

Then Bg(T ) is a bilinear form.
The map

Bg : T 7→ Bg(T )

is our desired isomorphism.
exercise: Verify linearity of the map Bg .
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Canonical Isomorphism

Proof.
That Bg is an isomorphism follows since if Bg(T1) = Bg(T2), then for
every X ,Y ∈ V :

0 = (Bg(T1)− Bg(T2))(X ,Y ) = g(T1(X )− T2(X ),Y ).

In particular for Y = T1(X )− T2(X ) we get that for every X

0 = g(T1(X )− T2(X ),T1(X )− T2(X )) ⇒ T1(X )− T2(X ) = 0

since g is positive-definite.
Therefore, Bg(T1) = Bg(T2) ⇒ T1 = T2 and the map Bg is injective.
Since dimHom(V ) = dimB2(V ) = n2 < ∞, the map is also surjective and
hence an isomorphism.
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Self-adjoint operators
Let g be an inner-product on a finite-dimensional vector space V .

Definition
A self-adjoint operator (with respect to g) is an linear map T : V → V
such that for every X ,Y ∈ V

g(T (X ),Y ) = g(X ,T (Y ))

Lemma
A linear map T : V → V is self-adjoint if and only if Bg(T ) is a
symmetric bilinear form.

Proof.
exercise: Back of the envelope calculation directly using the
definitions.
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Eigenvalues and Eigenvectors
Theorem
A self adjoint operator T is diagonalisable. That is, there is a basis
{ei}n

i=1 of eigenvalues.

Proof.
Consider the case dimV = 2.
Let us write

|X |g =
√

g(X ,X ).

From a basis {X1,X2} Gram-Schmidt gives an orthonormal basis:

ẽ1 =
X1

|X1|g
, ẽ2 =

X2 − g(X2, ẽ1)ẽ1
|X2 − g(X2, ẽ1)ẽ1|g

.

g(ẽi , ẽj) = δij :=

{
1, i = j
0, i 6= j .
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Eigenvalues and Eigenvectors
Proof.
We may thus write

S1 = {X : g(X ,X ) = 1} = {cos θẽ1 + sin θẽ2 : θ ∈ [0, 2π]}.

Let λ1 = min{g(T (X ),X ) : X ∈ S1}.
The map

θ ∈ [0, 2π] 7→ g(T (cos θẽ1 + sin θẽ2), cos θẽ1 + sin θẽ2)

is continuous hence there exists a θ0 ∈ [0, 2π] such that

λ1 = g(T (cos θ0ẽ1 + sin θ0ẽ2), cos θ0ẽ1 + sin θ0ẽ2).

Our desired basis is the orthonormal (why?) pair:

e1 = cos θ0ẽ1 + sin θ0ẽ2

e2 = − sin θ0ẽ1 + cos θ0ẽ2
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Eigenvalues and Eigenvectors

Proof.
Let us write

E1(θ) = cos θẽ1 + sin θẽ2, E2(θ) = − sin θẽ1 + cos θẽ2

so that
E1(θ0) = e1, E2(θ0) = e2

and
E ′

1(θ) = E2(θ), E ′
2(θ) = −E1(θ)
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Eigenvalues and Eigenvectors

Proof.
By definition, θ0 is a critical point of

g(T (E1(θ)),E1(θ))

hence

0 = ∂θ|θ=θ0g(T (E1(θ)),E2(θ))

= g(dT (e2), e1) + g(T (e1), e2)

= g(T (e2), e1) + g(T (e1), e2).
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Eigenvalues and Eigenvectors
Proof.
We just obtained that

g(T (e1), e2) = −g(e1,T (e2)).

But T is self-adjoint and hence

g(T (e1), e2) = g(e1,T (e2))

Thus
g(T (e1), e2) = −g(T (e1), e2) ⇒ g(T (e1), e2) = 0.

Therefore T (e1) ⊥ e2 and hence

T (e1) = ce1

for some c (possibly c = 0 but that’s okay).
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Eigenvalues and Eigenvectors

Proof.
Finally,

c = cg(e1, e1) = g(ce1, e1) = g(T (e1), e1) = λ1.

so that
T (e1) = λ1e1

as claimed. A similar argument gives T (e2) = λ2e2 for some λ2. In fact
λ2 = max{g(T (X ),X ) : X ∈ S1} because:

g(T (X ),X ) = g(T (X 1e1 + X 2e2),X 1e1 + X 2e2)

= g(X 1λ1e1 + X 2λ2e2,X 1e1 + X 2e2)

=
e1,e2 o/n

λ1X 2
1 + λ2X 2

≤
λ1=min

λ2(X 2
1 + X 2

2 ) =
g(X ,X)=1

λ2.
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Remarks on Eigenvalues and Eigenvectors

By an induction argument, and using the same ideas, one can prove
the general case of n dimensions.
With respect to the basis of eigenvectors e1, e2, T is diagonal:

T (X 1e1 + X 2e2) = X 1T (e1) + X 2T (e2) = X 1λ1e1 + X 2λ2e2.

As a matrix (
λ1 0
0 λ2

)(
X 1

X 2

)
=

(
λ1X 1

λ2X 2

)
.
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Quadratic Forms
Let B be a symmetric bi-linear form.
Define the quadratic form Q:

Q(X ) = B(X ,X ).

Q is quadratic in the sense that

Q(cX ) = B(cX , cX ) = c2B(X ,X ) = c2Q(X ).

Notice that

Q(X + Y ) = B(X + Y ,X + Y ) = B(X ,X + Y ) + B(Y ,X + Y )

= B(X ,X ) + B(X ,Y ) + B(Y ,X ) + B(Y ,Y )

= Q(X ) + 2B(X ,Y ) + Q(Y )

Thus, by symmetry and bi-linearity we may recover B from Q:

B(X ,Y ) =
1
2 [Q(X + Y )− Q(X )− Q(Y )] .
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