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Geodesic and normal Curvature

o Lety:/— Sbeacurveon S, p=~(0), V=+(0) € T,S.
e Note: The normal (in R3) ngs to v may be tangent to S, or may be
normal to S, or some linear combination thereof.
@ As a curve in R3, 4 may have curvature, ks # 0 simply because S
has curvature!
Definition
The normal curvature of v is the part of the curvature normal to S:

RN = <mnR3, N> .

The geodesic curvature vector, s (along S) is the projection of the
curvature vector ?Ra = KR3Ngs onto the tangent plane:

?5 = TI'TPS(HR3I7R3) = KR3NR3 — <I€R3HR3, N> N.

Let ns € T,S be such that ns L 4/(0) and (7/(0), ns) has positive
orientation. The geodesic curvature is ks = (K s, ns) (has a sign!).
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Example

Cylinder: C={x?+y?>=1,-1<z<1}, N(x,y,z)=(x,y,0).

v(t) = (cos t,sin t, zp)

7' (t) = (—sin t,cos t,0)

7"(t) = (- cos t, —sin, 0)
N(v(t)) = (cos t,sin t,0)

ns(y(t)) = (0,0,1)
Kps = ky = 1,65 = 0.

@ Check the orientation!

(’}/a ns, N)
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Example

Cylinder: C={x>+y?=1,-1<z<1}, N(x,y,z)=(x,y,0).

(t) = (1,0, ¢)
7'(t) =(0,0,1)
7"(t) =(0,0,0)

N(~(t)) = (1,0,0)

ns(y(t)) = (0,—1,0)
krs = ky = ks = 0.
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Example

Cylinder: C={x>+y?=1,-1<z<1}, N(x,y,z)=(x,y,0).

~(t) = (cos t,sint, t)
7'(t) = (—sint,cost, 1)
7"(t) = (- cos t, —sin, 0)
N(~y(t)) = (cos t,sin t,0)
ns(v(t)) = L(sin t,—cost,1)

Paul Bryan MATH704 Differential Geometry 7/42



Example

Cylinder: C={x®+y?>=1,-1<z<1}, N(x,y,z)=(x,y,0).

v(t) = (cos(cos t), sin(cos t), sin t)
7/'(t) = (sin(sin t) cos t, — cos(cos t) sin t, cos t)
7"(t) = (— cos(cos t) sin® t, — sin(cos t) sin® t, — sin t)
N(~(t)) = (cos(cos t),sin(cos t), 0)
ns(v(t)) =7
Kps = Ky =1, ks = 1.

@ How do | know kg =17

@ You have to wait to find out!
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Example

1
RR3 = X

(Icos (cos (¢))sin (£)1 + [sin (¢)sin (cos ()| + [cos (1))

Y )—(cos(cos(t)) sin (£)2 — cos () sin (cos(t))) cos (cos (t)) sin (¢)
—(sin (t)2sin (cos (t)) + cos(t)cos(cos(t))) sin () sin (cos(t))‘z
+ ]cos (cos (£))sin (t)?

+(sin ()% sin (cos ()) + cos (£) cos (cos (1)) cos(t)r
+ ’sin (t)2sin (cos (t))

- (cos (cos (t))sin ()% — cos (t) sin (cos (t))) cos (t)

‘ 2
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Lecture Nine: Curvature Of Regular Surfaces - Curvature
and the Second Fundamental Form

@ Lecture Nine: Curvature Of Regular Surfaces

@ Curvature and the Second Fundamental Form
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Dependence of normal curvature on direction

Theorem
Let v,0 : | — S with y(ty) = o(ty) and v'(to) = o' (to) for some ty € |.
Then
rn(7)(to) = rn(o)(to).
That is, the normal curvature ky depends only the tangent vector
V =+/(ty) = o/(ty) at the point p = v(tp) = o(to).

v

Note: Both ks and ks also depend on 4" (tp) (resp. o”(tp)) and so will in
general differ for v and o if 4" (ty) # o (to).

Thus xpn measures the curvature of S itself in the direction V
independently of the choice of curve v, 0.

Whereas ks measures the "left-over" curvature of ~ after removing the
curvature of S itself.
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Proof of Theorem

We will show that
kn = —(dN(¥),7) .
Let v be parametrised by arc-length, s. Then
Kpshgs = 7.
Therefore,
RN = <I€R3HR3, N) = <’}//, N> .
On the other hand, since (7', N) = 0 we have
0=20s(7,N) = (+",N) + (v, dN(v")) .

Hence,
kv = (Y, N)y = —(v,dN(7")).
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The Second Fundamental Form
Definition

The second fundamental form, or extrinsic curvature of S is defined to be

for X, Y tangent vectors to S.

Classically, the second fundamental form is the quadratic form:
II(X) = A(X, X).
The theorem shows that for any curve v on S parametrised by arc length,

rn = (—dN(¥'),7") = A(Y, ) = TI(Y).

More generally

KN

_IY) AW, vy
- 2 /A =A NIRRT

1| g, Y1 1Y
05



Spheres

Radius 1: S = {x®> + y? + 22 =1}
Choose N(p) = —p (inward pointing). Then dN,(X) = —X and

AX,Y) = (—dN(X),Y)=(X,Y)=g(X,Y)

Radius r: S%(r) = {x* + y? + 22 = r?}
Choose N(p) = —%p Then dN,(X) = —1X and

1 1

A(X,Y) = (=dN(X), ) = —(X,Y) = Zg(X,Y)

r

Equators (Great Circles)

v(0) = (rcos(8), rsin(6),0): ks = ky = %
A7) = 18(ys7) = 37 = r # rn 77777
A(Y',7') = |7'|?kn - not arc-length!
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Symmetry

Theorem

The second fundamental form is symmetric: A(X,Y) = A(Y, X).

Equivalently, the Weingarten shape operator is self-adjoint with respect to
g: g(W(X),Y) = g(X,W(Y)).

Proof.

Recall A(X, Y) = — (dN(X), Y).
Let v(s) € S be a curve with 7/(0) =
Then since (N(7(s)), Y(v(s))) =0 w have,

0 = 05 (N(7(s)), Y(~(s)))
= (dN(7'), Y) + (N, dY (7))
= (dN(X), Y) + (N, dY(X)).

Likewise 0 = (dN(Y), X) + (N, dX(Y)).
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Symmetry (proof continued)

Proof.

Thus A(X, Y) = — (dN(X), Y) = (N, dY(X)) and

A(Y, X) = (N, dX(Y)).

The required result is equivalent to the statement that dX(Y) — dY/(X) is
tangential, since then

A(X,Y) =AY, X) = (N, dY(X) — dX(Y)) = 0.

Let's take the case, X = d,¢, Y = 0, in a local parametrisation ¢:
In this case,

<Nv dX(Y)> = <N7avau90> = <Nvauavgp> = <Na dY(X)> o

The general result follows by bi-linearity of A and that {d,¢, d,¢} is a
basis so any X, Y are linear combinations of them. exercise! [

v
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Lecture Nine: Curvature Of Regular Surfaces - Principal,
Mean and Gauss Curvatures

@ Lecture Nine: Curvature Of Regular Surfaces

@ Principal, Mean and Gauss Curvatures
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Principal curvatures and Principal Directions

Definition
The principal curvatures k1, ko are the eigenvalues of the Weingarten
shape operator. The eigenvectors, e, e are called principal directions.

o Note that the principal curvatures (and directions) vary from point to
point, since dN varies from point to point.

@ From above, we know that dN is self-adjoint.

e From the appendix below we know that dN (being self adjoint) has
an orthonormal basis e;, e; of eigenvectors with eigenvalues k1, K».

. K1 0
= 0).
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Examples

Example

The sphere S(r) = {x2 + y? + 22 = r?}.
o dN=-1ld: k3 =rp=1.

@ All directions are principal directions!

Example
The cylinder C?(r) = {x? + y? = r?}.
e dN = —%77{2:0}

@ In the local parametrisation (rcosé, rsin 6, z):

0 0
w=(o 3).

e k1(r,0) =0, e(r,0)=(0,0,1).
o Kp(r,0) = % ex(r,0) = (—sin6,cosb,0)
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Mean Curvature and Gauss Curvature

Definition
The Mean Curvature is

1
= TF(W) = Tr(—dN) = 5 (Iil + Rg) .
The Gauss Curvature is

K = det(W) = det(—dN) = K1Kk2.

Examples

Plane R2 Sphere §? Cylinder C2(r)
e H=0 o H=1 o H=21
o K =0. o K=1. o K=0.
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Umbilic Points

Theorem

A point p € S is called umbilic if k1 = kp. If every point of a connected

regular surface S is umbilic, then S is entirely contained in a plane, or a
sphere.

@ At an umbilic point p,
dN, = k(p) Id
where k1(p) = k2(p) = &(p).

@ Therefore, umbilic points are points where the surface curves the
same way in all directions.

@ The basic idea is to show that x(p) = constant.
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Proof of Umbilic Point Theorem: x = constant.
@ With respect to a local parametrisation with ¢, = d,¢, ¢, = 0,¢:
dN(py,) = 0yN, dN(p,)=0,N.

@ Thus dN = k Id gives,
OyN = kp,, O/N=kp,.

@ What's next? Differentiate!
AOuN = Ky, + KO, 0y

and
0uOVN = Ky, + KO,0,

@ Subtracting and use Claireaut’s Theorem for mixed partial derivatives:
KvPu = Kypy = Ky = Ky = 0 = Kk = constant

since ¢, ¢, are linearly independent.
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Proof of Umbilic Point Theorem: Locally S C R?

o If we have

dN = 0.
@ Therefore
u s N = us N 5 N u — ) N =
Au (p, N) o rule {pus N) + (o, dN(pu)) = {@u; N) o) Tong
Likewise
Oy (¢, N) = 0.

Therefore (¢, N) = constant and the points ¢(u, v) lie in a plane.
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Proof of Umbilic Point Theorem: Locally S C S2.

o If we have
dN=kld, K#0

@ Therefore
1 1
u —in = u— —dN(py = u— —RPy =Y.
0 (SO K ) K=const ¥ /<;d (90 )dN:nId v HHSO 0
o Likewise

@ Therefore )
p——N=y € R3 is constant.
K

@ and hence
’(P(ua V) _y0| = ‘ | = (P(u V) € SZ(| |ay0)
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Proof of Umbilic Theorem: Global

@ The local theorem establishes, for each local parametrisation :
K, = constant
N, = const, (¢, Ny) = Cp, £y =0= S, CR?*(N,, C,)
Y= =Y ko #0= S, CSP(hr v)

In any overlap of charts, U, N Uz all the constants must agree.

@ S connected, means for any two points p, g € S there is a continuous
path 7 : [0,1] — S such that v(0) = p, v(1) = q.

Cover the image ([0, 1]) by local parametrisations ¢, (Uy) which
gives a cover of [0, 1]:

ngl(Ua)

[0, 1] is compact so there is a finite cover {¢;}7_;. with p € p1(U1),
g € on(Upn), UinUit1 # 0

o Thus Kk(p) = Ky, = Kg, = -+ = Ky, = K(q). Similar for the other
constants so the plane (or sphere) is globally defined. [
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Lecture Nine: Curvature Of Regular Surfaces - Appendix:
Symmetric bilinear forms

@ Lecture Nine: Curvature Of Regular Surfaces
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Symmetric Bilinear Forms

Definition

Let V be a real, finite dimensional vector space.
eg R,RZR3 ... R" ...

A bilinear form B on V is a map

B:VxV—>R
such that for all ¢c1, o € R and X1, X5, Y € V:
B(C1X1 + & X7, Y) = ClB(Xl, Y) + CzB(XQ, Y)

and
B(Y, C1X1 -+ C2X2) = ClB( Y,Xl) + CQB(Y,XQ)

B is symmetric if for every X, Y € V:

B(X,Y) = B(Y, X).
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Inner Products

Definition

An inner-product g is a positive-definite bilinear form. That is, g is a
bilinear form such that for all X € V,

g(X,X) >0, g(X,X)=0=X=0.

Example

Let V =R?, X = (x1,x2), and Y = (y1, y2). Define the standard inner
product:

g(X,Y)=(X,Y) = xiy1 + xoy».
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Inner Products

Example

Let A be any positive-definite, symmetric matrix. Define

g(X,Y) = XTAY = (X, AY).

Az(f ;)

g(X,Y) =2x1y1 + x1y2 + xoy1 + 3x2y0.

For example, let

Then

Note

g(X, X) =2x¢ 4+ 2x1x%0 4+ 3x3 = (x1 + x0)?> + xF +2x3 >0

with equality if and only if X = (0,0).

Paul Bryan MATH704 Differential Geometry 29 /42



Canonical Isomorphism

Lemma

Let g be an inner-product on V. Then g induces a linear isomorphism
between the vector space Hom( V) of linear transformations V. — V and
the vector space B2(V') of bilinear forms on V.

The vector space structure on Hom(V) is given by letting for each X € V,
(C1 T1+ o Tz)(X) =C Tl(X) + o TQ(X).

That is, given real constants ¢, ¢ € R and linear transformations

T1, To : V — V, we define the linear transformation ¢; T1 + 2 7> by
specifying it's value for each X € V.

On the right hand side, note that T1(X) € V so ci( T1(X)) is scalar
multiplication using the vector space structure on V. Likewise for
c2(T2(X)). The sum (c1 T1(X)) + (c2 T2(X)) is vector addition in V.

The vector space structure on linear maps V — V is defined pointwise.
Exercise: Figure out the vector space structure on bilinear forms. Hint: It's
also defined pointwise.
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Canonical Isomorphism

Proof.
Choose any basis {e1, ..., e,} for V, and write for X € V:

X=X'e+ -+ X"e,
A basis for Hom(V/) is given by the linear transformations

7'J-i(X1e1 +-- X"ep) = X'e;.

A basis for B2(V) is given by the bilinear forms
Bi(Xey +---X"ep, Yier 4+ -+ Y'e,) = X' Y/,

Thus,
dim Hom(V) = dim B3(V) = n?.

Thus they are isomorphic, being vector spaces of the same dimension, but
something else is needed to get a canonical isomorphism. ..
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Canonical Isomorphism

Example

Let ;1 = (1,0,...,0),e2 =(0,1,0,...,0),...,e, =(0,...,0,1) be the
standard basis for R".

The isomorphism induced by the standard inner-product defined on basis
elements by Tji + B and then extended by linearity.

Proof.
In general, given T € Hom(V) define

[Be(TI(X, Y) = &(T(X), Y).

Then Bg(T) is a bilinear form.
The map
Bg: T +— Bg(T)
is our desired isomorphism.
exercise: Verify linearity of the map B,.
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Canonical Isomorphism

Proof.

That Bg is an isomorphism follows since if Bg(T1) = Bg(T2), then for
every X, Y € V:

0= (Bg(T1) — Bg(T2))(X, Y) = g(T1(X) = Ta(X), ).
In particular for Y = T1(X) — Ta2(X) we get that for every X
0 =g(T(X) = T2(X), Ti(X) = T2(X)) = Ta(X) = T2o(X) =0

since g is positive-definite.

Therefore, Bg(T1) = Bg(T2) = T1 = T and the map Bg is injective.
Since dim Hom(V) = dim B?(V) = n? < oo, the map is also surjective and
hence an isomorphism. [

v
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Self-adjoint operators

Let g be an inner-product on a finite-dimensional vector space V.

Definition
A self-adjoint operator (with respect to g) is an linear map T : V — V
such that for every X, Y € V

g(T(X),Y)=g(X, T(Y))

Lemma

A linear map T : V — V is self-adjoint if and only if Bg(T) is a
symmetric bilinear form.

Proof.
exercise: Back of the envelope calculation directly using the
definitions. Ol
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Eigenvalues and Eigenvectors

Theorem

A self adjoint operator T is diagonalisable. That is, there is a basis
{ei}1_; of eigenvalues.

Proof.
Consider the case dim V = 2.

Let us write
X|, = V&(X, X).

From a basis { X1, X2} Gram-Schmidt gives an orthonormal basis:

5 — X1 g — Xo — g(X2,81)&
| Xul,’ X2 — g(X2, &1)& |,
. 1, i=j
g(é, &) =0d; = {0 P2
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Eigenvalues and Eigenvectors
Proof.

We may thus write

St ={X: g(X,X) =1} = {cos0&, +sin0&, : 6 € [0, 2x]}.

Let A1 = min{g(T(X),X): X € St}.
The map

0 € [0,27] — g( T (cosb&; + sin0&), cos H&; + sin &)
is continuous hence there exists a 0y € [0, 27] such that
A1 = g(T(cosbpé; + sin &), cos Bpé; + sin Hp&y).
Our desired basis is the orthonormal (why?) pair:

e = COS@oél + sin 90@2

e = —sinfyé; + cosbpér
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Eigenvalues and Eigenvectors

Proof.
Let us write
E1(6) = cos 08, + sin &, Ey(0) = —sin & + cos &,
so that
Ei(6p) = e1, Ex(bp) = e
and

E{(0) = E2(0), E;(0) = —Ex(6)
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Eigenvalues and Eigenvectors

Proof.

By definition, 6y is a critical point of

g(T(Ew(9)), E1(0))
hence
0 = Jglo=0,8( T (Ex(0)), E2(9))

= g(dT(e2), e1) + &(T(e1), &)
=g(T(e2),e1) + g(T(e1), &)
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Eigenvalues and Eigenvectors

Proof.
We just obtained that

g(T(a1), &) = —g(er, T(2))-

But T is self-adjoint and hence

g(T(a1), &) = g(er, T(e2))

Thus
g(T(e1), &) = —g(T(e1),e2) = g(T(e1), &2) = 0.

Therefore T(e1) L e and hence
T(e1) = cer

for some ¢ (possibly ¢ = 0 but that's okay).
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Eigenvalues and Eigenvectors

Proof.
Finally,

c = cg(er, e1) = g(cer, e1) = g(T(e1), 1) = M1
so that
T(el) = )\161
as claimed. A similar argument gives T(ep) = Apep for some ;. In fact
A2 = max{g(T(X),X) : X € S'} because:
g(T(X),X) = g(T(X er + X2e2), X e1 + Xe2)
= g(X"\er + X2hoer, Xty + Xe2)
= )\1X12 -+ )\2X2

e1,e o/n
< MXE+X3H) =
) 1 2
A1=min g(X,X)=1
v
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Remarks on Eigenvalues and Eigenvectors

@ By an induction argument, and using the same ideas, one can prove
the general case of n dimensions.

@ With respect to the basis of eigenvectors e, e;, T is diagonal:

T(X'er + X?e) = X  T(e1) + X2T(e2) = X M1er + X2 haen.

A0 /XY /Xt
0 ) \Xx2) T \ux2)-

@ As a matrix
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Quadratic Forms

Let B be a symmetric bi-linear form.
Define the quadratic form Q:

Q(X) = B(X, X).
Q is quadratic in the sense that
Q(cX) = B(cX, cX) = 2B(X, X) = 2Q(X).
Notice that
QX+ Y)=BX+Y,X+Y)=BX,X+Y)+B(Y,X+Y)

= B(X,X)+ B(X,Y) + B(Y.X)+ B(Y,Y)
= Q(X) +2B(X, Y) + Q(Y)

Thus, by symmetry and bi-linearity we may recover B from Q:
1
B(X,Y) = [QIX+Y) = Q(X) — Q(Y)].
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