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Smooth Manifolds: Intrinsic Surfaces
Definition
A set M is an n-dimensional smooth manifold if there exists a cover Uα of
M and maps ϕα : Uα → Rn such that

1 each ϕα is a one-to-one and onto an open set Vα = ϕα(Uα) ⊆ Rn,
2 ϕα(Uα ∩Uβ) is open,
3 the transition maps

ταβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are diffeomorphisms. That is, ταβ is differentiable and has a
differentiable inverse.

In fact, it’s enough to assume that ταβ is differentiable for each α, β
since τ−1

αβ = τβα.
The maps ϕα : Uα → Rn are called charts.
The collection of all the charts is called an atlas.
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Charts on a Manifold
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Regular Surfaces are Manifolds

Example
Let S ⊂ R3 be a regular surface. Then we have a cover of S by local
parametrisations

ψα : Vα ⊆ R2 → R3.

Then S is a smooth manifold with charts given by

ϕα = ψ−1
α : Uα = ψα(Vα) ⊆ M → Vα ⊆ R2.

Note that
ταβ = ϕβ ◦ ϕ−1

α = ψ−1
β ◦ ψα

is differentiable by the assumption that S is a regular surface and by the
inverse function theorem.

Same definition for regular n-dimensional hypersurfaces Mn ⊆ Rn+1.
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Example: The Sphere
Example
The n-sphere is the set

Sn = {(x1, . . . , xn+1) : x2
1 + · · ·+ x2

n+1 = 1} = {V ∈ Rn+1 : ‖V ‖ = 1}.

Polar coordinates by induction:

Sn \{N, S} = {(
√

1 − r2σ, r) : −1 < r < 1, σ ∈ Sn−1}

emispheres:

U±
1 = {(±

√
1 − (x ′)2, x ′) : x ′ ∈ Rn, ‖x ′‖ < 1}

...

U±
n+1 = {(x ′,±

√
1 − (x ′)2) : x ′ ∈ Rn, ‖x ′‖ < 1}
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Example: The Sphere. Stereographic Coordinates
Example
Draw the line Lx from the North pole N = en+1 to any point x ∈ Sn \{N}.

That is Lx = {(1 − t)N + tx : t ∈ R}.
Let πN(x) = (1 − t)N + tx :

〈
en+1, (1 − t)N + tx

〉
= 0. Then

{πN(x)} = Lx ∩ {xn+1 = 0} is the unique point of intersection of Lx
with the xn+1 = 0 plane.

Then πN : Sn \{N} → Rn ' {xn+1 = 0} is a bijection.

In fact
πN(x1, · · · , xn+1) =

1
1 − xn+1 (x

1, · · · , xn).

The inverse map defined for y = (y1, · · · , yn) is

π−1
N (y) = 1

‖y‖2 + 1(2y1, · · · , 2yn, ‖y‖2 − 1).
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Example: The Affine Group.

Example
The affine group is the set of matrices:

A =

{(
a b
0 1

)
: a, b ∈ R, a > 0

}
It corresponds to orientation preserving affine transformations R → R:

x 7→ ax + b  
(

x
1

)
7→

(
a b
0 1

)(
x
1

)
=

(
ax + b

1

)

Smooth manifold with a single chart ϕ(Aij) = (A11,A12) maps
bijectively with the open set {(a, b) ∈ R2 : a > 0}.
Also a regular surface, being the "half space":
{(a, b, 0) ∈ R3 : a > 0}.
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Example: Projective Space

Example
Two dimensional real Projective Space, RP2 is the set of lines through the
origin in R3:

RP2 = {[V ] : V 6= 0 ∈ R3, [V ] = {λV : V 6= 0}}.

An atlas is given by three charts. The first:

ϕ1 : U1 = {[V ] = [(V1,V2,V3)] : V1 6= 0} → R2

[V ] 7→
(

V2
V1
,
V3
V1

)
.

This maps bijectively with R2. Similarly U2 has V2 6= 0 and U3 has V3 6= 0.
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Example: Projective Space
Example

The transition map is defined on U1 ∩ U2 = {[V ] : V1,V2 6= 0}.
Then we have

ϕ1(U1 ∩ U2) = {ϕ1([V ]) : V1,V2 6= 0}

=

{(
V2
V1
,
V3
V1

)
: V1,V2 6= 0

}
= {(x , y) : x 6= 0}.

Explicitly

τ12 : (x , y)
ϕ−1

17→ [(1, x , y)] ϕ27→ (1/x , y/x)

τ12 is differentiable for (x , y) ∈ ϕ1(U1 ∩ U2) since then x 6= 0.
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Example: Grassmanians

Example
The Grassmanian Gk(Rn) is the set of k-planes ∈ Rn.
That is,

Gk(Rn) = {V ⊂ Rn| dimV = k}.

Equivalently,
Gk(Rn) = {[A : Rk → Rn]| rnk(A) = k}

where
[A] = {B · A|B : Rk → Rk , detB 6= 0}.
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Implicit Function Theorem

Theorem (Implicit Function Theorem)
Let F : Rn+k → Rk be a smooth function, let (x0, y0) ∈ Rn × Rk ' Rn+k

and let z0 = F (x0, y0) ∈ Rk .
If dF(x0,y0) restricted to {0} × Rk is invertible, then there exists an open
set U containing x0 and an open set V containing y0 and a unique smooth
function g : U → V such that for (x , y) ∈ U × V we have F (x , y) = z0 if
and only if y = g(x).

Proof.
Let F̄ (x , y) = (x ,F (x , y)). Then F̄ : Rn+k → Rn+k and

dF̄ =

(
Idn 0
∂x f ∂y f

)
where ∂x f = df |Rn×{0} and ∂y f = df |{0}×Rk .
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Implicit Function Theorem
Proof.
Then by the inverse function theorem, F̄ is locally invertible near (x0, y0).
Therefore, in a neighbourhood of (x0, y0) and a neighbourhood of (x0, z0)
we have F (x , y) = z0 if and only if F̄ (x , y) = (x , z0) if and only if
(x , y) = F̄−1(x , z0).
Writing F−1(x , z) = (g1(x , z), g2(x , z)) ∈ Rn+k , we then take

g(x) = g2(x , z0).

Can you see what the function g1 must be?
Notice we proved the implicit function theorem by appealing to the
inverse function theorem.

I In fact the converse is true! Namely, if we assume the implicit function
theorem is true, then we can prove the inverse function theorem.

I But how to prove the implicit function theorem? By the contraction
mapping principle of course!
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Inverse Image Of A Regular Value
Definition
Let F : Rn+k → Rk be a smooth function. Then y ∈ Rk is a regular value
of F if rnk dFx = k for all x ∈ F−1(y) (i.e. all x such that F (x) = y).

Theorem
Let y ∈ Rk be a regular value of a smooth function F : Rn+k → Rk . Then
the set M = F−1(y) is a smooth manifold of dimension n.

Proof.
For any x0 ∈ M, the assumption of the theorem ensures that there are k
linearly independent columns in dFx0 .
Label these columns by ii , · · · , ik and label the remaining columns by
j1, · · · , jn.
By the implicit function theorem, locally near x0, there is a smooth
function g : U ⊆ Rn → V ⊆ Rk such that x ∈ M if and only if
(x i1 , · · · , x ik ) = g(x j1 , · · · , x jn).
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Inverse Image Of A Regular Value

Proof.
To make life a little easier, rearrange the columns by permutation so that
(j1, · · · , jn) are the first n columns and (i1, · · · , ik) the last k columns.
Write π for the permutation that maps x r to x jr for 1 ≤ r ≤ n and x s to
x is for 1 ≤ s ≤ k. This map is a bijection that just rearranges the columns
so that the k linearly independent columns are at the end.
Then locally near π−1(x0) we have π(x) ∈ M if and only if
(xn+1, · · · , xn+k) = g(x1, · · · , xn).
Parametrise M near x0 by

ϕ(x1, · · · , xn) 7→ π(x1, · · · , xn, g(x1, · · · , xn)).

for (x1, · · · , xn) ∈ U.
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Inverse Image Of A Regular Value

Proof.
Then ϕ is smooth, injective and has injective differential. Thus M is
covered by local parametrisations and hence is a regular n-surface in Rn+k .
Recall for regular surfaces we used the inverse function theorem again to
show that the transition maps are diffeomorphisms. The same argument
works here and confirms the transition maps are diffeomorphisms, hence
M is a manifold.

You should try to check the other conditions in the definition of
manifold! These, involving only continuity are typically easier.
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