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Tangent Vectors
Define an equivalence class of curves: v ~ ¢ if
7(0) = o(0)
and there is a chart ¢ : U — R? with 7(0) € U such that
(¢ 079)(0) = (¢ o )(0).
Write [y] = {0 : 0 ~ ~} for the equivalence class of ~.
Definition

The tangent space, TxM to M at x is the equivalence class of curves
through x

TM = {[7] - 7(0) = x}.
If we choose a different chart, 1
(o) (0)=(Yop topor)(0)
=d(yop ) (por)(0)=d(¥op™t) (po0o)(0)
= (¢ 00)(0).
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Tangent Vectors on Regular Surfaces

Recall that for a regular surface

TS ={'(0) : 7(0) = x}
where /(0) is the derivative at zero of 7 : (—¢,¢) — S C R3 as a curve in
R3.

The new definition says tangent vectors are equivalence classes of curves
[v] in S.
The definitions will be equivalent provided:

e 7/(0) = o/(0) as vectors in R3 if and only if [y] = [0].
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Tangent Vectors on Regular Surfaces

Now recall that charts ¢ are just inverses of local parametrisations .
That is ¢ = ¢ 1.
We have

Y (0) =0'(0) & (¢ opoy)(0) = (¢ opoa)(0)
if and only if
d(e™) (o) (0) =d(p)- (o) (0).

But ¢ = ¢! is a local parametrisation so that d(¢ 1) injective.
Therefore the last equation is equivalent to

(#079)(0) = (¢ 0 0)(0).
That is [y] = [o].
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Coordinate Vector Fields

Definition
With respect to chart ¢, we define coordinate vector fields:

Eu(x) = [p7(0(x) + (£,0)],  Ev(x) = [p" ((x) + (0, 1))]

e Thatis, ¢ : U — R? and so ¢(x) € R2. Then ¢(x) + (t,0) is a curve
in R? and
1(t) = 07 (p(x) + (£,0)
is a curve in M with 7,(0) = x.
@ Thus E,(x) = [vu4] is a tangent vector at x.

e We think of E, as 7,,(0) (though strictly speaking, the derivative only
makes sense in the chart).

@ Analogously for n-dimensions: E;(x) = [0~ (p(x) + te;)].
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Definition

Definition
The set of tangent vectors is called the tangent bundle. It is denoted TM.J

e Each tangent vector is an equivalence class of curves X = [v].

@ There is a bundle projection map:
x=7(X)=~(0) e M

where X = [].
e This is independent of the representative since if X = [y] = [o], then
by definition v(0) = ¢(0).
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Vector Bundle Structure

Theorem

The tangent bundle is a manifold. In fact, it is a vector bundle of rank
n = dim(M).

Definition
A vector bundle of rank k consists of smooth manifolds M, E and a
smooth map 7 : E — M such that there exists an open cover {U,} of M
and local trivialisations ¢, : E|y, := 7~ 1(U,) — U, x R¥ satisfying

Q@ ©.: Ely, — Uy x R¥ is a homeomorphism,

@ p1 0, = m where p; : U, x RK = U, is the projection onto the first
factor,

© The transition maps 1,5 = g o w3l Uy Us x Rk = U, N Us x R*
are of the form

Tap(X, V) = (X, Aag(x) - V)
where Aag Uaﬁ — G]L,, is a smooth map with each A,g(x) and

ix_ multinlicatinn

I an = -
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Remarks on Vector Bundles

Q ¢, Ely, = Uy % R¥ is a diffeomorphism,
This point says that locally a vector bundle is may be identified
diffeomorphicly with a trivial bundle U, x R¥.
Qo plogpa:ﬂwherepleaka%Ua
» This just says that under the local indentification with a trivial bundle,
the projection is just projecting onto the first factor.
» For X € E, we have ¢, (X) = (x, V,) with x € U, € M and V, € Rk
» We think of elements of a vector bundle having a base point
x =m(X) = p1(pa(X)) = p1(x, V) = x and locally a vector part
V e Rk

(x, V) = Tap(x, Vo) = (x, Anp(x) - Va)

The vector part V,, = p2(¢a(X)) depends on the chosen trivialisation.
The transition map tells us how to relate the vector part in one local
trivialisation with the vector part in another: V3 = A,g- V. Think of
this like a change of basis.
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Fibres and Vector Space Structure
Definition

Let X1, Xo € TM with x = 7(X1) = m(X2) and let ¢!, c® € R. Then we
define

X1+ 2 Xo = ot (x, VP 4+ 2V
where ¢, (Xi) = (x, V7).

In another local trivialisation, we have (x, \/,5) = (x,Aqs - V). Then
Tap(a(c' X1 + €2X2)) = (x, Aap(x) - (' V' + 2 V5Y))
= (%, M A (X)X + 2 Ans(x)X5')
= (x, clvf + C2V2ﬁ)
= pg(c' Xt + 2X?).

Thus taking a linear combination of the V is identified by the transition

map with the same linear combination of the \/,-’B hence definition of
a X! + X? is independent of the chosen local trivialisation.
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Proof of Vector Bundle Structure

Proof.

In a local chart ¢, : U, — R", we have coordinate vector fields

Ei(x) = [pa (9al(x) + te))].

These are a basis since if X = [v], then

(Pa07)(0) = X'er + -+ X"e,
for unique constants X!,..., X" € R.
Therefore
X =[p3 (0alx) + t(X er + -+ X"ep))]

= Xz (alx) + ter)] + - - + X053 (¢a(x) + ten)]
= XE +-- - X"E,.
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Proof of Vector Bundle Structure
Proof.
For X € E|y, = 7 }(Uy), define

(X)) = (x, XL, ..., X") € U, x RX,

The first two points in the definition vector bundle are straightforward.
For the third, the transition maps are
Ta,@(X7 V) = (X7 d((,Dﬁ © (10;1) : V)

Recall that ¢g o @51 are the transition maps for M which are smooth
diffeomorphisms hence the differential is a linear isomorphism as required.

v
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Proof of Vector Bundle Structure

Proof.

For the manifold structure on TM. Charts are given by:
Va(X) = (0alx), X1(x),..., X"(x)) € R" x R,
The transition map is

Yoy (v, V) = (pgowy(y), d(pgowzt) V).
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Examples

Q@ For M =R", we have TR" ~ R" x R",

@ On the two-sphere S?, the famous "Hairy Ball Theorem" from
albegraic topology states that there is no non-vanishing vector field
on TS?. Then TS? % S? x R2,

© In fact, a much deeper result says that TS" ~ S” x R" if and only if
n=1237.

> It's not too hard to show the result is true for n =1,3,7 by using
complex multiplication for S C R? ~ C, and quaternion and octonion
multiplication for n = 3 and n = 7 respectively.

» The really deep part is that no other n admits a global trivialisation.

© The torus has TT ~ T x R?, since T ~ St x SL.

© In general,
T(Mx N)~TM x TN

so that the tangent bundle of a product of manifolds is the product of
the tangent bundles.
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Riemannian Metrics

Definition
A Riemannian metric (or just metric) on M is a smooth choice, gy of
positive definite, symmetric bilinear form for each x € M.

There are various ways to interpret the term smooth here. In the present
context, perhaps the easiest way to define smooth is with respect to the
coordinate vector fields: define

gi(x) = g(Ei(x), £;(x))

Then
gx = (&ij(x))

is smooth if and only if y € R" — (g;i(¢~1(y)) is a smooth matrix valued
function. Equivalently, each component function gj; is smooth.
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Riemannian Geometry

We can define length, angle and area just as for regular surfaces.

| X|g = /&(X,X), length of a tangent vector

X, Y
0 = arccos <M> angle between tangent vectors
[ XlglYlg

b
Lly] = / |7/(t)|dt arc-length of a curve

A(R) :/ \/det gdudv area of a bounded region
R
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